A Survey of BSDF Measurements and Representations

Işık yansıması ve iletiminin doğru bir şekilde ölçümlenip sunulması malzemelerin yüksek doğrulukta görsel simülasyonu için çok önemlidir. Bu makalede, literatürdeki en son İki Yönlü Saçılım Dağılım Fonksiyonu (BSDF) ölçümlemeleri ve modelleri incelenmektedir. Literatürdeki en son BSDF modellerinin camlardan metallere, izotropikden anizotropiğe ve ışığı yeniden yönlendiren filmlere kadar bir çok yüzey tipi için genel bir çözüm önermedikleri gösterilmiştir. Bunun dışında, özellikle normal geliş yönü ve süpürme açıları gibi spesifik ölçümleme açılarında doğru ve yoğun BSDF ölçümlemesinin kolay olmadığı gösterilmiştir. Bu makalede, etkin BSDF ölçümlemesi ve sunumu için genel bir çözüm bulma problemine yönelinmiştir. Ayrıca, mevcut BSDF sunumlarının etkin olarak kullanımına müsaade etmeyen ana konular belirtilmiştir. Son olarak, BSDF literatüründe incelenmesi gereken açık araştırma konuları önerilmiştir

BSDF Ölçümlemelerinin ve Sunumlarının İncelenmesi

Measuring and representing light reflection and transmission accurately are core to high fidelity visual simulation of materials. In this paper, we analyze state-of-the-art Bidirectional measurements and models. We show that the most of the state-ofthe-art BSDF models do not suggest a general solution for any surface class, from glasses to metals, isotropic to anisotropic materials, and daylight redirecting films. Furthermore, it’s shown that an accurate and dense BSDF acquisition is not a trivial task at especially some specific measurement angles, such as normal incidence and grazing angles. In this paper, we address the problem of finding a general solution for efficient BSDF measurement and representation. We also outline the main issues that do not allow the effective use of current BSDF representations. Finally, we suggest open research issues that need to be investigated in BSDF literature

___

  • [1] Papas, M., de Mesa, K., Jensen, H.W. 2014. A Physically-Based BSDF for Modeling the Appearance of Paper, Computer Graphics Forum, Vol. 33, No. 4, pp. 133–142. (Proc. Eurographics Symp. Rendering ’14).
  • [2] Matusik, W., Pfister, H., Brand, M., McMillan, L. 2003. A data-driven reflectance model, ACM Transactions on Graphics, Vol. 22, No. 3, pp. 759–769. (Proc. SIGGRAPH ’03).
  • [3] Ghosh, A., Achutha, S., Heidrich, W., O’Toole, M. 2007. BRDF acquisition with basis illumination. International Conference on Computer Vision, 1–8.
  • [4] Apian-Bennewitz, P. 2014. Building material examples (BME) BRDF and BSDF database. http://www.pab.eu/goniophotometer/demodata/bme/ (Access Date: 15.11.2017).
  • [5] Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T. 1977. Geometrical Considerations and Nomenclature for Reflectance. Final Report National Bureau of Standards, Washington, DC. Inst. for Basic Standards, National Bureau of Standards (US).
  • [6] Walter, B., Marschner, S.R., Li, H., Torrance, K.E. 2007. Microfacet models for refraction through rough surfaces. The 18th Eurographics Conference on Rendering Techniques, ser. EGSR’07, 195–206.
  • [7] Cook, R.L., Torrance, K.E. 1981. A reflectance model for computer graphics, Computer Graphics, Vol. 15, No. 3, pp. 307-316.
  • [8] He, X.D., Torrance, K.E., Sillion, F.X., Greenberg, D.P. 1991. A comprehensive physical model for light reflection, Computer Graphics, Vol. 25, No. 4, pp. 175–186. (Proc. SIGGRAPH ’91).
  • [9] Ward, G.J. 1992. Measuring and modeling anisotropic reflection, Computer Graphics, Vol. 26, No. 2, pp. 265–272. (Proc. SIGGRAPH ’92).
  • [10] Lafortune, E.P., Foo, S.-C., Torrance, K.E., Greenberg, D.P. 1997. Nonlinear approximation of reflectance functions. SIGGRAPH ’97, 117–126.
  • [11] Ashikhmin, M., Shirley, P. 2000. An anisotropic Phong BRDF model, Journal of Graphics Tools, Vol. 5, No. 2, pp. 25–32.
  • [12] Duer, A. 2005. On the Ward model for global illumination. Unpublished material.
  • [13] Edwards, D., Boulos, S., Johnson, J., Shirley, P., Ashikhmin, M., Stark, M., Wyman, C. 2006. The halfway vector disk for BRDF modeling, ACM Transactions on Graphics, Vol. 25, No. 1, pp. 1–18.
  • [14] Ozturk, A., Kurt, M., Bilgili, A., Gungor, G. 2008. Linear approximation of bidirectional reflectance distribution functions, Computers & Graphics, Vol. 32, No. 2, pp. 149–158.
  • [15] Geisler-Moroder, D., Dür, A. 2010. A new ward BRDF model with bounded albedo, Computer Graphics Forum, Vol. 29, No. 4, pp. 1391–1398. (Proc. Eurographics Symp. Rendering ’10).
  • [16] Kurt, M., Szirmay-Kalos, L., Krivanek, J. 2010. An anisotropic brdf model for fitting and monte carlo rendering. SIGGRAPH Computer Graphics, Vol. 44, No. 1, pp. 1–15.
  • [17] Xu, K., Sun, W.-L., Dong, Z., Zhao, D.- Y., Wu, R.-D., Hu, S.-M. 2013. Anisotropic spherical Gaussians. ACM Transactions on Graphics, Vol. 32, No. 6, pp. 209:1–209:11. (Proc. SIGGRAPH Asia’13).
  • [18] Dai, Q., Wang, J., Liu, Y., Snyder, J., Wu, E., Guo, B. 2009. The dualmicrofacet model for capturing thin transparent slabs, Computer Graphics Forum, Vol. 28, No. 7, pp. 1917–1925. (Proc. Pacific Graphics ’09).
  • [19] Heitz, E., Hanika, J., d’Eon, E., Dachsbacher, C. 2016. Multiplescattering microfacet bsdfs with the smith model, ACM Transactions on Graphics, Vol. 35, No. 4, pp. 58:1–58:14. (Proc. SIGGRAPH ’16).
  • [20] Lawrence, J., Rusinkiewicz, S., Ramamoorthi, R. 2004. Efficient BRDF importance sampling using a factored representation, ACM Transactions on Graphics, Vol. 23, No. 3, pp. 496–505. (Proc. SIGGRAPH ’04).
  • [21] Öztürk, A., Kurt, M., Bilgili, A. 2010. A copula-based brdf model, Computer Graphics Forum, Vol. 29, No. 6, pp. 1795–1806.
  • [22] Bilgili, A., Öztürk, A., Kurt, M. 2011. A general BRDF representation based on tensor decomposition, Computer Graphics Forum, Vol. 30, No. 8, pp. 2427–2439.
  • [23] Pacanowski, R., Celis, O.S., Schlick, C., Granier, X., Poulin, P., Cuyt, A. 2012. Rational BRDF, IEEE Transactions on Visualization and Computer Graphics, Vol. 18, No. 11, pp. 1824–1835.
  • [24] Guarnera, D., Guarnera, G., Ghosh, A., Denk, C., Glencross, M. 2016. Brdf representation and acquisition, Computer Graphics Forum, Vol. 35, No. 2, pp. 625–650. (Proc. Eurographics STAR - State of The Art Report ’16).
  • [25] Rusinkiewicz, S.M. 1998. A new change of variables for efficient brdf representation. Eurographics Workshop on Rendering, Springer, 11–22.
  • [26] Ngan, A., Durand, F., Matusik, W. 2005. Experimental analysis of BRDF models, Eurographics Symposium on Rendering, 117– 126.
  • [27] Bagher, M., Soler, M.C., Holzschuch, N. 2012. Accurate fitting of measured reflectances using a Shifted Gamma micro-facet distribution, Computer Graphics Forum, Vol. 31, No. 4, pp. 1509– 1518. (Proc. Eurographics Symp. Rendering ’12).
  • [28] Gu, J., Ramamoorthi, R., Belhumeur, P.N., Nayar, S.K. 2007. Dirty glass: Rendering contamination on transparent surfaces. The Eurographics Symposium on Rendering Techniques, Grenoble, France, Eurographics Association, 159–170.
  • [29] Schlick, C. 1994. An inexpensive BRDF model for physically-based rendering, Computer Graphics Forum, Vol. 13, No. 3, pp. 233–246.
  • [30] Richardson, I.E. 2002. Video Codec Design: Developing Image and Video Compression Systems. John Wiley & Sons, Inc. New York, NY, USA.
  • [31] Hanrahan, P., Krueger, W. 1993. Reflection from layered surfaces due to subsurface scattering. SIGGRAPH ’93, ACM, 165–174.
  • [32] Jakob, W., d’Eon, E., Jakob, O., Marschner, S. 2014. A comprehensive framework forrendering layered materials, ACM Transactions on Graphics, Vol. 33, No. 4, pp. 118:1–118:14. (Proc. SIGGRAPH’14).
  • [33] Jakob, W. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org (Access Date: 15.11.2017).
  • [34] Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W. 2011. HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions, ACM Transactions on Graphics, Vol. 30, No. 4, pp. 40:1–40:14. (Proc. SIGGRAPH ’11).
  • [35] Ward, G., Kurt, M., Bonneel, N. 2012. A practical framework for sharing and rendering real-world bidirectional scattering distribution functions, Lawrence Berkeley National Laboratory, Tech. Rep. LBNL-5954E, http://eetd.lbl.gov/sites/all/files/ publications/lbnl12-tensor-treerepresentation29102012.pdf
  • [36] Donner, C., Jensen, H.W. 2005. Light diffusion in multi-layered translucent materials, ACM Transactions on Graphics, Vol. 24, No. 3, pp. 1032–1039. (Proc. SIGGRAPH ’05).
  • [37] Heitz, E., d’Eon, E. 2014. Importance sampling microfacetbased bsdfs using the distribution of visible normal, Computer Graphics Forum, Vol. 33, No. 4, pp. 103–112. (Proc. Eurographics Symp. Rendering ’14).
  • [38] Ward, G., Kurt, M., Bonneel, N. 2014. Reducing anisotropic bsdf measurement to common practice. The 2nd Eurographics Workshop on Material Appearance Modeling: Issues and Acquisition, Eurographics Association, 5–8.
  • [39] Bonneel, N., van de Panne, M., Paris, S., Heidrich, W. 2011. Displacement interpolation using lagrangian mass transport, ACM Transactions on Graphics, Vol. 30, No. 6, pp. 158:1–158:12. (Proc. SIGGRAPH Asia ’11).
  • [40] Fores, A., Pattanaik, S.N., Bosch, C., Pueyo, X. 2009. BRDFLab: A general system for designing BRDFs. CEIG’09, Eurographics, 153–160.
  • [41] I. Copyright Disney Enterprises. 2012. Brdf explorer. http://www.disneyanimation.com /technology/brdf.html (Access Date: 15.11.2017).
  • [42] Belcour, L., Courtes, L., Pacanowski, R., et al. 2015. ALTA: A BRDF Analysis Library. http://alta.gforge.inria.fr/ (Access Date: 15.11.2017).
  • [43] Ward, G.J. 1994. The radiance lighting simulation and rendering system. SIGGRAPH ’94, ACM, 459– 472.