Katyonik Polimer Katkılı Geosentetik Kil Örtülerin Farklı Tuz Çözeltileri ile Etkileşimi

Geosentetik kil örtü (GKÖ), düşük hidrolik iletkenliği sayesinde atık depolama alanlarında bariyer özelliği ile kullanılan bir kaplama malzemesidir. Bu çalışmada, GKÖ’nün bentonit bileşenine sırasıyla kütlece %0.5, %1 ve %2 oranlarında katyonik polimer eklenmiş ve üç eksenli hidrolik iletkenlik ile serbest şişme deneyleri yapılarak GKÖ’nün sırasıyla 0.1 M KCl, 0.5 M KCl ve 0.1 M MgCl2 tuz çözeltilerinde hidrolik performansı irdelenmiştir. Sonuç olarak GKÖ’ye 0.1 M KCl çözeltisinde %0.5 katyonik polimer eklenmesi, hidrolik iletkenliği yaklaşık 0.13 katına, 0.5 M KCl ile 0.1 M MgCl2 çözeltilerinde ise %1 katyonik polimer eklenmesi,  hidrolik iletkenliği sırasıyla yaklaşık 0.18 ve 0.08 katına düşürerek gerekli hidrolik performansı sağlamıştır. GKÖ’ye daha fazla polimer eklemek, hidrolik iletkenliği ya değiştirmemiş ya da artırmıştır. GKÖ’nün şişme indeksi de %2 miktarına kadar katyonik polimer eklenmesi sonucunda artmıştır. Katyonik polimerin hidrolik iletkenlik üzerindeki etkileri polimer-bentonit-tuz çözeltisi arasındaki elektrostatik kuvvetler ile, şişme indeksi üzerindeki etkileri ise difüz çift tabaka ile ilişkilendirilmiştir. Tuz çözeltilerinin konsantrasyonunu ve katyon değerliğini artırmak ise hidrolik iletkenliği artırıp şişme indeksini azaltmıştır. Deney sonuçlarına göre kullanılan katyonik polimer, GKÖ’nün hidrolik özelliklerini iyileştirerek tuz çözeltilerinde yeterli hidrolik performansta kullanımını sağlamıştır.

Interaction of Cationic Polymer-Treated Geosynthetic Clay Liners with Various Saline Solutions

Geosynthetic clay liner (GCL) is a lining material that is used in waste containment facilities with its low hydraulic conductivity and barrier capability. In this study, %0.5, %1 and %2 cationic polymer by mass was added respectively to the bentonite component of the GCLs and triaxial hydraulic conductivity and free swell tests were performed on the GCLs that were permeated with 0.1 M KCl, 0.5 M KCl and 0.1 M MgCl2 saline solutions respectively in order to evaluate the hydraulic performance of the GCL. As a result, %0.5 cationic polymer in 0.1 M KCl solution and %1 cationic polymer in 0.5 M KCl and 0.1 M MgCl2 solutions improved the hydraulic performance of the GCL by causing almost 0.13, 0.18 and 0.08 times decrease in hydraulic conductivity respectively. However, additional polymer treatment resulted in either no change or increase in hydraulic conductivity. Furthermore, swell index of the GCL increased by adding up to an amount of %2 cationic polymer to the GCL. The effect of adding cationic polymer to the GCL on hydraulic conductivity and swell index was related to the electrostatic forces among polymer-bentonite-saline solution and diffuse double layer respectively. Increasing the concentration and valence of the cation in the saline solutions resulted in both increase in hydraulic conductivity and decrease in swell index. According to the test results, the cationic polymer improved the hydraulic properties of the GCL and resulted in a satisfactory hydraulic performance in saline solutions.

___

  • Akbulut S., (2003), Katı atık depolama alanlarının geoteknik tasarımı, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 223-230.
  • ASTM D 854, (2014), Standard test methods for specific gravity of soil solids by water pycnometer, ASTM International, West Conshohocken, PA.
  • ASTM D 4318, (2010), Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soils, ASTM International, West Conshohocken, PA.
  • ASTM D 4751, (2016), Standard test method for determining apparent opening size of a geotextile, ASTM International, West Conshohocken, PA.
  • ASTM D 5199, (2012), Standard test method for measuring the nominal thickness of geosynthetics, ASTM International, West Conshohocken, PA.
  • ASTM D 5261, (2010), Standard test method for measuring mass per unit area of geotextiles, ASTM International, West Conshohocken, PA.
  • ASTM D 5890, (2011). Standard test method for swell index of clay mineral component of geosynthetic clay liners. ASTM International, West Conshohocken, PA.
  • ASTM D 5993, (2004), Standard test method for measuring mass per unit of geosynthetic clay liners, ASTM International, West Conshohocken, PA.
  • ASTM D 6766, (2012), Standard test method for evaluation of hydraulic properties of geosynthetic clay liners permeated with potentially incompatible aqueous solutions, ASTM International, West Conshohocken, PA.
  • Ben-Hur M., Malik M., Letey J., Mingelgrin U., (1992), Adsorption of polymers on clays as affected by clay charge and structure, polymer properties, and water quality, Soil Sciences, 153, 349–356.
  • Benson C.H., Meer S.R., (2009), Relative abundance of monovalent and divalent cations and the impact of desiccation on geosynthetic clay liners, Journal of Geotechnical and Geoenvironmental Engineering, 135(3), 349–358.
  • Bohnhoff G.L., Shackelford C.D., (2014), Hydraulic conductivity of polymerized bentonite amended backfills, Journal of Geotechnical and Geoenvironmental Engineering, doi:10.1061/(ASCE)GT.1943-5606.0001034.
  • Bouazza A., Gates W.P., (2014), Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry, Geosynthetics International, 21(2), 151-167.
  • Güngör N., Karaolan S., (2001), Interactions of polyacrylamide polymer with bentonite in aqueous systems, Materials Letters, 48(3-4), 168-175.
  • Haase H., Schanz T., (2016), Compressibility and saturated hydraulic permeability of clay-polymer composites-experimental and theoretical analysis, Applied Clay Science, doi:10.1016/j.clay.2016.01.020.
  • Jo H.Y., Benson C.H., Shackelford C.D., Lee J.M., Edil, T.B., (2005), Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions, Journal of Geotechnical and Geoenvironmental Engineering, 131(4), 405–417.
  • Jozefaciuk G., Matyka-Sarzynska D., (2006), Effect of acid treatment and alkali treatment on nanopore properties of selected minerals, Clay Minerals, 54(2), 220-229.
  • Katsumi T., Ishimori H., Onikata M.K., Fukagawa R., (2008), Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions, Geotextiles and Geomembranes, 26, 14–30.
  • Koerner R.M., (2005), Designing with Geosynthetics (5th ed.), Prentice Hall, Upper Saddle River, New Jersey, United States of America, 816 ss.
  • Koerner R.M., Daniel D.E., (1995), A suggested methodology for assessing the technical equivalency of GCLs to CCLs, Koerner R.M., Gartung E., Zanzinger H., (Eds.), Geosynthetic Clay Liners. Balkema, Rotterdam, ss. 73-98.
  • Lee J.M., Shackelford C.D., (2005), Concentration dependency of the prehydration effect for a geosynthetic clay liner. Soils and Foundations, 45(4), 27-41.
  • Liu Y., Gates W.P., Bouazza A., (2012), Effectiveness of polymers on improving the fluid loss of bentonite used in geosynthetic clay liners, Proc., Australian Regolith and Clay Conference, Mildura, 1, ss. 75-78.
  • Liu Y., Gates W.P., Bouazza, A., (2013), Acid induced degradation of the bentonite component used in geosynthetic clay liners, Geotextiles and Geomembranes, 36(2-4), 71-80.
  • Mazzieri F., Di Emidio G., Fratalocchi E., Di Sante M., Pasqualini E., (2013), Permeation of two GCLs with an acidic metal-rich synthetic leachate, Geotextiles and Geomembranes, 40, 1-11.
  • McBride M.B., (1997), A critique of diffuse double layer models applied to colloid and surface chemistry, Clays and Clay Minerals, 45(4), 598-608.
  • Mendes M.J.A., Touze-Foltz N., Palmeira E.M., Pierson P., (2010), Influence of structural and material properties of GCLs on interface flow in composite liners due to geomembrane effects, Geosynthetics International, 17(1), 34-47.
  • Önen V., Göçer M., (2016), Simektit süspansiyonlarının bazı elektrolit ve polimer solüsyonları içerisinde sedimantasyon ve elektrokinetik özellikleri, Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16, 399-408.
  • Ören A.H., Demirkıran H., (2015), Geosentetik kil örtülerin hidrolik iletkenliklerinin laboratuvarda belirlenmesi üzerine bir çalışma, İMO Teknik Dergi, 440, 7191-7213.
  • Özhan H.O., Güler E., (2013), Use of perforated base pedestal to simulate the gravel subbase in evaluating the internal erosion of geosynthetic clay liners, Geotechnical Testing Journal, 36(3), 418-428.
  • Razakamanantsoa A.R., Barast G., Djeran-maigre I., (2012), Hydraulic performance of activated calcium bentonite treated by polyionic charged polymer, Applied Clay Science, 59-60, 103-114.
  • Razakamanantsoa A.R., Djeran-maigre I., Barast G., (2014), Characterisation of bentonite polymer for bottom liner use, Environmental Geotechnics, 3(1), 28-35.
  • Scalia J., Benson C.H., (2011), Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers with composite barriers, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(ASCE)GT.1943-5606.0000407.
  • Scalia J., Benson C.H., Bohnhoff G.L., Edil T.B., Shackelford C.D., (2014), Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(ASCE)GT.1943-5606.0001040, 04013025.
  • Shackelford C.D., Sevick G.W., Eykholt G.R., (2010), Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions, Geotextiles and Geomembranes, 28(2), 149-162.
  • SNF Türkiye, (2016), Technical data sheet for anionic polymers, Kucukcekmece-Istanbul, Turkey.
  • Studds P.G., Stewart D.I., Cousens T.W., (1996), The effect of ion valence on the swelling behavior of sodium bentonite, Proceedings of the Fourth International Conference on Re-use of Contaminated Land and Landfills, Edinburgh, ss. 139-142.
  • Theng B.K.G., (2012), Formation and properties of clay-polymer complexes (2nd ed.), Developments in Clay Science, 4, Elsevier, Amsterdam, 511 ss.
  • Tian K., Benson C.H., Likos W.J., (2016), Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate, Journal of Geotechnical and Geoenvironmental Engineering, doi: 10.1061/(ASCE)GT.1943-5606.0001495, 04016037.
  • Van de Wiel H.J., (2003), Determination of elements by ICP-AES and ICP-MS, National Institute of Public Health and the Environment (RIVM) Bilthoven, The Netherlands, Horizontal-19, September 2003, 37 ss.
  • Villar M.-V., Lloret A., (2004), Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite, Applied Clay Science, 26(1), 337–350.
  • Vukelic A., Szavits-Nossan A., Kvasnicka P., (2008), The influence of bentonite extrusion on shear strength of GCL/geomembrane interface, Geotextiles and Geomembranes, 26(1), 82-90.
  • Wang S., Zhu W., Qian X., Xu H., Fan X., (2016), Temperature effects on non-Darcy flow of compacted clay, Applied Clay Science, 135, 521-525.
  • Weber C.T., Zornberg J.G., (2005), Leakage through liners under high hydraulic heads, Proceedings GRI-18 at Geofrontiers, ASCE, Austin, TX., ss. 1-7.
  • Yılmaz G., Arasan S., Yetimoğlu T., (2008), Katı depolama alanlarındaki taban kil şiltelerinin geçirimliliklerine NaCl tuzunun etkisi, İMO Teknik Dergi, 286, 4347-4356.
Doğal Afetler ve Çevre Dergisi-Cover
  • ISSN: 2528-9640
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Artvin Çoruh Üniversitesi Doğal Afetler Uygulama ve Araştırma Merkezi