Kaolen Türü Killi Zeminlerin Dayanım Özelliklerinin Melamin Formaldehit Sıvı Polimeri Kullanarak İyileştirilmesi

Zemin iyileştirme yöntemleri, şehirler ve endüstri bölgelerinde artan yapılaşma ihtiyacı sonucunda daha çok alan kullanımı gereksinimi nedeniyle gün geçtikçe uygulamalarda tercih edilen yöntemlerden biri haline gelmiştir. Bir diğer tercih sebebi ise yeni geliştirilen yöntem ve malzemeler ile geleneksel yöntemlere göre daha ekonomik ve hızlı çözümlerin elde edilebilmesidir. Dünyada son yıllarda kimyasal stabilizörlerin, taşıma kapasitesi, şev duraylılığı ve erozyon gibi problemli durumlarda, zemin iyileştirme uygulamalarında kullanımı, ekonomik oluşu, kolay uygulanması ve erken dayanım kazanma nedenleri ile giderek artış göstermektedir. Bu çalışmada sıvı haldeki melamin formaldehit polimerinin, kaolen türü killerin dayanım özellikleri üzerindeki etkisi incelenmiştir. Sıvı melamin formaldehit polimerinin optimum su muhtevasında sıkıştırılmış kaolen örnekler içerisine eklenerek serbest basınç dayanımlarındaki değişimler araştırılmıştır. Sıvı polimer yüzde 3, 6, 9 ve 12 oranlarında örneklere optimum su muhtevasını geçmeyecek şekilde, su ile yer değiştirerek eklenmiş ve hazırlanan polimer katkılı örnekler 3, 7, 14 ve 28 gün boyunca küre tabii tutulmuşlardır. Kür süresi sonunda serbest basınç testlerine tabii tutulan farklı yüzdeler ile stabilize edilmiş örneklerde, polimer katkı oranı ve kür süresi arttıkça dayanımlarda ciddi artışlar tespit edilmiştir. Elde edilen bu sonuca göre melamin formaldehit sıvı polimer katkısı zemin iyileştirme yöntemi olarak killi zeminlere uygulanabilecektir.

Improving the Strength Properties of Kaolinite Type Clays Using Melamine Formaldehyde Liquid Polymer

Soil remediation methods have become one of the preferred methods due to the need for more space for construction activities in cities and industrial areas. Another reason for choosing the remediation techniques is to obtain economical and faster solutions compared to the conventional methods. In recent years, the use of chemical stabilizers in soil remediation applications, such as slope stability, erosion and bearing capacity, has increased steadily due to economy, easy application, workability and early strength gain. In this study, the effects of liquid melamine formaldehyde polymer on the strength properties of kaolinite type clay were investigated. The changes in compressive strength values were evaluated by adding liquid melamine formaldehyde polymer into the kaolinite specimens compacted at previously determined optimum water content value. The liquid polymer was added at 3, 6, 9 and 12 per cent by weight with water, so as not to exceed the optimum water content of the matrix, and the prepared polymer-added samples were cured for 3, 7, 14 and 28 days to observe the strength gain at different curing times. Significant increases were observed in the strength values of the samples stabilized with different percentages of liquid polymer subjected to unconfined compression tests at the end of the curing period as the polymer addition ratio and the curing time increased. According to the obtained results, melamine formaldehyde liquid polymer can be applied to clayey soils as a soil stabilizer.

___

  • Ajalloeian R., Matinmanesh H., Abtahi S., Rowshanzamir M., (2013), Effect of polyvinyl acetate grout injection on geotechnical properties of fine sand, Geomechanics and Geoengineering, 8(2), 86–96.
  • Al-Khanbashi A., El-Gamal M., (2003), Modification of sandy soil using water-borne Polymer, Journal of Applied Polymer Science, 88(10), 2484–2491.
  • Al-Khanbashi A., Abdalla S., (2006), Evaluation of three waterborne polymers as stabilizers for sandy soil, Geotechnical and Geological Engineering, 24(6), 1603–1625.
  • Anagnostopoulos C., Hadjispyrou S., (2004), Laboratory study of an epoxy resin grouted sand, Ground Improvement, 8(1), 39–45.
  • Anagnostopoulos C., Papaliangas T., (2012), Experimental investigation of epoxy resin and sand mixes, Journal of Geotechnical and Geoenvironmental Engineering, 138(7), 841–849.
  • Anagnostopoulos C., Kandiliotis P., Lola M., Karavatos S., (2013), Effect of epoxy resin mixtures on the physical and mechanical properties of sand, Research Journal of Applied Sciences, Engineering and Technology, 7(17), 3478–3490.
  • ASTM, (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, (ASTM D2166M-16). ASTM International, West Conshohocken, PA.
  • ASTM, (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, (ASTM D4318-17e1). ASTM International, West Conshohocken, PA.
  • ASTM, (2012), Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, (ASTM D698-12e2). ASTM International, West Conshohocken, PA.
  • Camberfort H., (1977), The principles and applications of grouting, Quarterly Journal of Engineering Geology and Hydrogeology. 10(2), 57–95.
  • Gilazghi S., Huang J., Rezaeimalek S., Bin-Shafique S., (2016), Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization, Engineering Geology, 211, 171–178.
  • Harris P., Holdt P., Sebesta S., (2006), Recommendations for Stabilization of High – Sulfate Soils in Texas, Federal Highway Administration, Texas Transportation Institute, Texas A&M University, FHWA/TX-06/0-4240-3.
  • Hilf J., (1991), Compacted fill, in: H. Fang (Ed.), Foundation Engineering Handbook, Van Nostrand Reinhold, NewYork, ABD.
  • Imbabi M., Carrigan C., McKenna S., (2012), Trends and developments in green cement and concrete technology”, International Journal of Sustainable Built Environment, 1(2), 194–216.
  • Ingles O.G., Metcalf J.B., (1972), Soil Stabilization: Principles and Practice, Butterworth-Heinemann Ltd, Oxford, UK.
  • Jones E., Ajayi-Majebi A., Grissom W., Smith L., Jones E., (1991), Epoxy-resin-based chemical stabilization of a fine, poorly graded soil system, Transportation Research Records: Journal of Transportation Research Board, 1295, 95–108.
  • Katz L., Rauch A., Liljestrand H., Harmon J., Shaw K., Albers H., (2001), Mechanisms of soil stabilization with liquid ionic stabilizer, Transportation Research Records: Journal of Transportation Research Board, 1757, 50–57.
  • Li X.J., (2014), Shrinkage Cracking of Soils and Cementitiously-Stabilized Soils: Mechanisms and Modeling, Ph.D. thesis, Washington State University, ABD.
  • Little D.N., (1992), Comparison of in-situ resilient moduli of aggregate base courses with and without low percentages of lime stabilization, ASTM Special Technical Publication, 1135, 8–22.
  • Little D., (1995), Stabilization of Pavement Subgrades Base Courses with Lime, Lime Association of Texas, ABD.
  • Liu J, Shi B., Jiang H., Huang H., Wang G., Kamai T., (2011), Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer, Engineering Geology, 117, 114–120.
  • Mitchell J., (1986), The twentieth Terzaghi lecture, Journal of Geotechnical Engineering, 112(3), 255–289.
  • Mohammed A., Vipulanandan C., (2013), Compressive and tensile behavior of polymer treated sulfate contaminated CL Soil, Geotechnical and Geological Engineering, 32(1), 71–83.
  • Moustafa A., Bazaraa A., Nour El Din A., (1981), Soil stabilization by polymeric materials, Macromolecular Materials and Engineering, 97(1), 1–12.
  • Naeini S., Ghorbanalizadeh M., (2010), Effect of wet and dry conditions on strength of silty sand soils stabilized with epoxy resin polymer, Journal of Applied Sciences, 10(22), 2839–2846.
  • Naeini S., Naderinia B., Izadi E., (2012), Unconfined compressive strength of clayey soils stabilized with waterborne polymer, KSCE Journal of Civil Engineering, 16(6), 943–949.
  • Newman K., Tingle J., (2004), Emulsion polymers for soil stabilization, Airport Technology Transfer Conference, Atlantic City, New Jersey, ABD.
  • Ohama Y., (1995), Handbook of Polymer-Modified Concrete and Mortars, Noyes Publications, Park Ridge, New Jersey, ABD.
  • Puppala A.J., Ramakrishna A.M., Hoyos L.R., (2003), Resilient moduli of treated clays from repeated load triaxial test, Transportation Research Records: Journal of Transportation Research Board, 1821, 68–74.
  • Rauch A., Harmon J., Katz L., Liljestrand H., (2002), Measured effects of liquid soil stabilizers on engineering properties of clay, Transportation Research Records: Journal of Transportation Research Board, 1787, 33–41.
  • Rezaeimalek S., Huang J., Bin-Shafique S., (2017), Evaluation of curing method and mix design of a moisture activated polymer for sand stabilization”, Construction and Building Materials, 146, 210–220.
  • Santoni R., Tingle J., Webster S., (2002), Stabilization of silty sand with Nontraditional additives, Transportation Research Records: Journal of Transportation Research Board, 1787, 61–70.
  • Sebesta S., (2005), Use of microcracking to reduce shrinkage cracking in cementtreated bases, Transportation Research Records: Journal of Transportation Research Board, 1936, 3–11.
  • Sherwood P., (1994), Soil Stabilization with Cement and Lime, Stationary office, London, UK.
  • Zandieh A., Yasrobi S., (2010), Study of factors affecting the compressive strength of sandy soil stabilized with polymer, Geotechnical and Geological Engineering, 28(2), 139–145.
Doğal Afetler ve Çevre Dergisi-Cover
  • ISSN: 2528-9640
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2015
  • Yayıncı: Artvin Çoruh Üniversitesi Doğal Afetler Uygulama ve Araştırma Merkezi