Sonlu Elemanlar Yöntemi ve Taguchi Metodu Kullanılarak Bir Kara Aracının Parametrik Olarak Optimum Tasarımının Geliştirilmesi

Kara araçları fonksiyonel ihtiyaçların karşılanabilmesi ve üretim sonrası kullanım durumunda yapısal olarak emniyetli çalışması için tasarlanan araçlardır. Arazi şartları için uygulanan tasarım aracın hareket sınırlarını değiştirebilmektedir. Yapının güvenli çalışması için yapısal emniyeti sağlamak amacıyla sonlu elemanlar analizi (SEA) sonuçlarına göre tasarımlar gerçekleştirilip iyileştirilebilmektedir. Sınır değerleri ve yapısal güvenliği sağlamayan araçlar veya makineler can kaybına sebep olabilmektedir. Seri üretim için makine tasarımlarında kullanıcı isteğine göre farklı ve hızlı tasarımlar elde edilmesi üretici firmalar tarafından istenilebilmektedir. Bilgisayar destekli tasarım programlarının, programlama dilleri ile haberleştirilip arayüzler hazırlanarak hızlı ve farklı tasarımlar elde edilebilmekte ayrıca tasarım için uygulanan mühendislik maliyetini azaltabilmektedir. Belirlenen parametrelere göre hazırlanan bu arayüzler ile parametrik olarak fonksiyonel amaçları karşılayan tasarımlar gerçekleştirilebilmektedir. Bu çalışmada insan veya yük taşımak için tasarlanan bir kara aracının, arazi açıları, birden çok kişilik kullanımı ve farklı fonksiyonel ihtiyaçları için şasinin uzunluğu, yüksekliği ve genişliği ana değişkenler olmak üzere 17 adet değişken parametrik tasarım arayüzünde tanımlanmıştır. Aracın önden çarpma, yanal çarpma ve şasinin burulması konfigürasyonları için SEA gerçekleştirilmiştir. Bu konfigürasyonlara göre 9 adet farklı tasarım için Taguchi metodu ile optimum tasarım parametreleri belirlenmiştir. Optimum tasarıma göre önden çarpma konfigürasyonu için 44.7 MPa, yanal çarpma durumu için 25.62 MPa ve burulma konfigürasyonu için 33.66 MPa Von-Misses eşdeğer gerilme değerleri elde edilmiştir. Hareket sınırları için tırmanabilme açısı 25°, yanal devrilme açısı 34° ve ivme sınırı 14 m/s2 olarak belirlenmiştir. Aracın genel yapı itibariyle emniyetli olduğu belirlenmiş ve optimum tasarıma göre aracın üretimi gerçekleştirilmiştir.

Developing Parametrically Optimum Design of a Land Vehicle Using the Taguchi Method and Finite Element Method

Land vehicles are vehicles designed to meet functional needs and to operate structurally safely in post-production use. The design applied for the terrain conditions can change the movement limits of the vehicle. In order to provide structural safety for the safe operation of the structure, designs can be realized and improved according to the results of finite element analysis (FEM). Vehicles or machines that do not provide limit values and structural safety can cause loss of life. In machine designs for mass production, it may be desired by the manufacturer companies to obtain different and fast designs according to the user's request. By communicating computer-aided design programs with programming languages and preparing interfaces, fast and different designs can be obtained, and it can also reduce the engineering cost applied for the design. With these interfaces, which are prepared according to the determined parameters, designs that meet functional purposes parametrically can be realized. In this study, 17 variables, including the length, height and width of the chassis, are defined in the parametric design interface for the terrain angles, multi-person use and different functional needs of a land vehicle designed for disabled people. FEM analyzes were performed for the vehicle's frontal impact, lateral impact and chassis torsion configurations. According to these configurations, optimum design parameters were determined for 9 different designs with the Taguchi method. According to the optimum design, von-Misses equivalent stress values of 44.7 MPa for the frontal impact configuration, 25.62 MPa for the lateral impact and 33.66 MPa for the torsion configuration were obtained. For the movement limits, the climbing angle was determined as 25°, the lateral tipping angle was 34° and the acceleration limit was determined as 14 m/s2. It was determined that the vehicle was safe in terms of its general structure and the vehicle was produced according to the optimum design.

___

  • [1] N. Geren, O. O. Akçalı, and M. Bayramoğlu, "Parametric design of automotive ball joint based on variable design methodology using knowledge and feature-based computer assisted 3D modelling," Engineering applications of artificial intelligence, vol. 66, pp. 87-103, 2017.
  • [2] Y. Bodein, B. Rose, and E. Caillaud, "A roadmap for parametric CAD efficiency in the automotive industry," Computer-Aided Design, vol. 45, no. 10, pp. 1198-1214, 2013.
  • [3] Y. Cheng, F. He, X. Lv, and W. Cai, "On the role of generating textual description for design intent communication in feature-based 3D collaborative design," Advanced Engineering Informatics, vol. 39, pp. 331-346, 2019.
  • [4] C. H. Chu, M. C. Song, and V. C. Luo, "Computer aided parametric design for 3D tire mold production," Computers in Industry, vol. 57, no. 1, pp. 11-25, 2006.
  • [5] T. Türkücü and H. R. Börklü, "Tersine mühendislik yaklaşımına dayalı yeni bir imalat için tasarım işlem modeli," Gazi University Journal of Science Part C: Design and Technology, vol. 6, no. 1, pp. 91-104, 2018.
  • [6] F. Demoly and S. Roth, "Knowledge-based parametric CAD models of configurable biomechanical structures using geometric skeletons," Computers in Industry, vol. 92, pp. 104-117, 2017.
  • [7] K. Amadori, M. Tarkian, J. Ölvander, and P. Krus, "Flexible and robust CAD models for design automation," Advanced Engineering Informatics, vol. 26, no. 2, pp. 180-195, 2012.
  • [8] S. Bhooshan, "Parametric design thinking: A case-study of practice-embedded architectural research," Design Studies, vol. 52, pp. 115-143, 2017.
  • [9] J. Byrne, P. Cardiff, and A. Brabazon, "Evolving parametric aircraft models for design exploration and optimisation," Neurocomputing, vol. 142, pp. 39-47, 2014.
  • [10] E. J. Reddy and V. P. Rangadu, "Development of knowledge based parametric CAD modeling system for spur gear: An approach," Alexandria engineering journal, vol. 57, no. 4, pp. 3139-3149, 2018.
  • [11] Z. Xie, L. Yao, J. Ding, K. Ren, B. Jia, and J. Liu, "Development of parametric design system of double circular arc spiral bevel gear nutation drive based on Solidworks," Advances in Mechanical Design: Proceedings of the 2021 International Conference on Mechanical Design (2021 ICMD), 2022: Springer, pp. 1471-1487.
  • [12] A. Akpolat, "Analysis of contact stresses in spur gears by finite element method," Avrupa Bilim ve Teknoloji Dergisi, no. 17, pp. 539-545, 2019.
  • [13] E. Emir and E. Benzer, "Structural analysis of industrial foam crusher machine by using finite element method," Avrupa Bilim ve Teknoloji Dergisi, no. 29, pp. 343-350, 2021.
  • [14] A. Gök, "Design and numerical analysis of face mask polymer shield against infectious diseases," Journal of Mechanics in Medicine and Biology, vol. 22, no. 06, p. 2250039, 2022.
  • [15] A. Gök, H. Demirci, and K. Gök, "Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces," Proceedings of the institution of mechanical engineers, part e: journal of process mechanical engineering, vol. 230, no. 2, pp. 111-119, 2016.
  • [16] O. B. Özden, B. Gökçe, and A. Erdemir, "Investigation of welded joints in finite element analysis," 2nd International Congress on Scientific Advances (ICONSAD’22), pp. 516-522, 2022.
  • [17] G. Sarı, A. F. Ak, A. A. Akış and E. Aydınoğlu, "Experimental and numerical modal analysis of a bladed rotor", Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 13, no.1, pp. 57-63, 2022.
  • [18] E. Esener, "Plastisite modellerinde pekleşme etkisinin sonlu elemanlar analizi ile tespiti", Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol. 11, no. 1, pp. 171-181, 2020.
  • [19] K. Gök, A. Gök, and Y. Kisioglu, "Computer aided finite element simulation of the developed driller system for bone drilling process in orthopedic surgery," Journal of Advanced Manufacturing Systems, vol. 18, no. 04, pp. 583-594, 2019.
  • [20] K. Gök, A. B. Selçuk, and A. Gök, "Computer-aided simulation using finite element analysis of protect against to coronavirus (COVID-19) of custom-made new mask design," Transactions of the Indian Institute of Metals, vol. 74, no. 5, pp. 1029-1033, 2021.
  • [21] G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs (no. 1. c.). UNIPUB/Kraus International Publications, 1987.
  • [22] Y. Kayalı, B. Gökçe, E. Mertgenç, F. Çolak, and R. Kara, "Analysis with taguchi method of wear behaviors of borided AISI 52100 steels," Journal of the Balkan Tribological Association, 2013.
  • [23] Y. Kayali, B. Gokce, E. Mertgenc, F. Colak, and R. Kara, "Analysis of wear behavior of borided AISI 52100 steel with the Taguchi method," J Balkan Tribol Assoc, vol. 19, no. 3, p. 365, 2013.
  • [24] Ö. Şeyma, "Taguchi metodu kullanılarak plastik enjeksiyon kalıplama tekniğiyle üretilen parçadaki çekme probleminde etkili parametrelerin optimizasyonu," Researcher, vol. 1, no. 01, pp. 48-56, 2021.
  • [25] K. Gök, A. Gök, and Y. Kisioglu, "Optimization of processing parameters of a developed new driller system for orthopedic surgery applications using Taguchi method," The International Journal of Advanced Manufacturing Technology, vol. 76, pp. 1437-1448, 2015.
  • [26] B. Maazinejad et al., "Taguchi L9 (34) orthogonal array study based on methylene blue removal by single-walled carbon nanotubes-amine: Adsorption optimization using the experimental design method, kinetics, equilibrium and thermodynamics," Journal of Molecular Liquids, vol. 298, p. 112001, 2020.
  • [27] G. Shanmugasundar, B. Karthikeyan, P. S. Ponvell, and V. Vignesh, "Optimization of process parameters in TIG welded joints of AISI 304L-austenitic stainless steel using Taguchi’s experimental design method," Materials Today: Proceedings, vol. 16, pp. 1188-1195, 2019.
  • [28] A. Gök, C. Gologlu, and H. I. Demirci, "Determination of form defects depending on tool deflection in ball end milling of convex and concave surfaces," 2014.
  • [29] H. Eric Tseng, L. Xu, and D. Hrovat, "Estimation of land vehicle roll and pitch angles," Vehicle System Dynamics, vol. 45, no. 5, pp. 433-443, 2007.
  • [30] M. Shaqura and J. S. Shamma, "An Automated Quadcopter CAD based Design and Modeling Platform using Solidworks API and Smart Dynamic Assembly," in ICINCO (2), pp. 122-131, 2017.
  • [31] Özden, O. B., (2018). “Özel amaçlı elektrikli bir kara aracının tasarımı ve prototipinin geliştirilmesi,” Yüksek Lisans Tezi, Afyon Kocatepe Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği A.B.D., 2018.
  • [32] O. Ikechukwu, "Finite element analysis of tungsten inert gas welding temperatures on the stress profiles of ais1 1020 low carbon steel plate," International Journal of Engineering Technologies IJET, vol. 5, no. 2, pp. 50-58, 2019.
  • [33] S. Chereshnia and S. Berman, "Automatic identification of the assembly base component for robotic manufacturing," IFAC-PapersOnLine, vol. 55, no. 2, pp. 90-95, 2022.
  • [34] J. D. Camba, M. Contero, and P. Company, "Parametric CAD modeling: An analysis of strategies for design reusability," Computer-Aided Design, vol. 74, pp. 18-31, 2016.
  • [35] C. Dragne, C. Radu, and M. Iliescu, "Mechanical engıneerıng of robotıc systems by solıdworks."