Ultrasonik işlemin düşük dereceli kömürün kolon flotasyonu üzerine etkisi

Bu çalışmada, ultrasonik işlemin düşük dereceli linyit kömürünün kolon flotasyonu üzerindeki etkisi araştırılmıştır. Ayrıca ultrasonun gücü ve tedavi süresi flotasyon süreçini önemli derecede etkilemiş ve en iyi değerler 60 Watt ultrason gücünde ve 3 dakikalık muamele süresinde elde edilmiştir. Ultrasonik işlemin güç değerlerinin ve muamele süresinin daha fazla artması flotasyon başarısını olumsuz yönde etkilemiştir. Ayrıca, optimum kül içeriği ve yanabilir verim değerleri 1000 g/ton toplayıcı ve 2000 g/ton köpürtücü konsantrasyon değerlerinde elde edilmiştir. Ultrasonik işlem flotasyon reaktiflerinin aktivitesinin artırarak flotasyon sürecini iyileştirmiştir. Ayrıca ultrasonla yapılan deneylerde temas açısı değerlerinin aynı deneysel koşullar altında klasik yapılan deneylere göre daha yüksek olduğu tespit edilmiştir. Sonuç olarak,% 28,01 kül içeriğine sahip kömür, ultrasonik işlem kullanılarak% 13,94 kül içeriği ve % 76,25 verim ile zenginleştirilmiştir.

___

  • [1] B. Yarar, “Flotation,” Ulmann’s Encyclopedia of Industrial Chemistry, vol B2, pp 23-28. 1988.
  • [2] M.S. Celik, “Effect of ultrasonic treatment on the floatability of coal and galena”, Sep. Sci. Technol., vol. 24 pp.1159–1166, 1989.
  • [3] T.G. Leighton, “The Acoustic Bubble”, Academic Press, London, 1994.
  • [4] S.G. Ozkan, and H.Z. Kuyumcu,” Investigation of mechanism of ultrasound on coal flotation”, Int. J. Miner. Process., vol. 81, pp. 201–203, 2006. https://doi.org/10.1016/j.minpro.2006.07.011
  • [5] S.G. Ozkan, and H.Z. Kuyumcu, “Design of a flotation cell equipped with ultrasound transducers to enhance coal flotation”, Ultrason. Sonochem, vol. 14, pp. 639–645, 2007 https://doi.org/10.1016/j.ultsonch.2006.10.001
  • [6] M. Ashokkumar,” The characterization of acoustic cavitation bubbles – an overview”, Ultrason. Sonochem., vol. 18, pp. 864–872, 2011.
  • [7] S.G. Ozkan, “Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes”, Fuel, vol. 93, pp. 576–580, 2012.
  • [8] S.G. Ozkan, “Further investigations on simultaneous ultrasonic coal flotation”, Minerals, vol. 7, p.177, 2017. https://doi.org/10.3390/min7100177
  • [9] M. Xu, Y. Xing, X. Gui, Y. Cao, D. Wang, and L. Wang, “Effect of ultrasonic pretreatment on oxidized coal flotation”, Energy Fuels, vol. 31, pp. 14367–14373, 2017. https://doi.org/10.1021/acs.energyfuels.7b02115
  • [10] M. Ghadyani, S. Noaparast, and S.Z. Tonkaboni, “A study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics a study on the effects of ultrasonic irradiation as pretreatment method on high-ash coal flotation and kinetics”, Int J Coal Prep Util., vol. 38, pp. 374-391, 2018. https://doi.org/10. 1080/19392699.2016.1277210
  • [11] Y. Peng, Y. Mao, W. Xia, and Y. Li, “Ultrasonic flotation cleaning of high-ash lignite and its mechanism”, Fuel, vol. 220, pp. 558–566, 2018.
  • [12] Y. Mao, Y. Peng, X. Bu, G. Xie, E. Wu, and W. Xia, “Effect of ultrasound on the true flotation of lignite and its entrainment behavior”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 40, pp. 940–950, 2018.
  • [13] Y. Mao, W. Xia, Y. Peng, and G. Xie, “Ultrasonic-assisted flotation of fine coal: A review”, Fuel Process. Technol., vol. 195, p.106150, 2019a.
  • [14] Y. Mao, Y. Chen, X. Bu, and G. Xie, “Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force”, Fuel, vol. 256, p. 115938, 2019b. https://doi.org/10.1016/j.fuel.2019.115938
  • [15] Y. Mao, X. Bu, Y. Peng, F. Tian, and G. Xie, “Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite”, Fuel, vol. 259 , p. 116270, 2020.
  • [16] Y. Chen, G. Xie, J. Chang, J. Grundy, and Q. Liu, “A study of coal aggregation by standing-wave ultrasound”, Fuel, vol. 248 pp. 38–46, 2019. https://doi.org/10.1016/j.fuel.2019.03.030
  • [17] A.R. Videla, R. Morales, T. Saint-Jean, L. Gaete, Y. Vargas, and J.D. Miller, “Ultrasound treatment on tailings to enhance copper flotation recovery”, Miner. Eng., vol. 99 , pp. 89–95, 2016.
  • [18] Y. Chen, V.N.T. Truong, X. Bu, and G. Xie, “A review of effects and applications of ultrasound in mineral flotation”, Ultrason. Sonochem., vol. 60, p. 104739, 2020. https://doi.org/10.1016/j.ultsonch.2019.104739
  • [19] P. Kopparthi, S. Balamurugan, and A.K. Mukherjee, “Effect of ultrasonic pre-treatment time on coal flotation”. International Journal of Coal Preparation & Utilization, vol. 40, pp. 807-823, 2020. https://doi.org/ 10.1080/19392699.2017.1417268
  • [20] ASTM D 3173–03, 2010, Standard Test Method for Moisture in the Analysis Sample of Coal and Coke, 3.
  • [21] ASTM D 3174–04, 2010, Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal, 5.
  • [22] ASTM D 5865–10a, 2010, Standard Test Method for Gross Calorific Value of Coal and Coke, 14.
  • [23] N.E. Altun, J.Y. Hwang, and C. Hicyilmaz, “Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment”, Int. J. Miner. Process., vol. 91, pp. 1–13, 2009. https://doi.org/10.1016/j.minpro.2008.10.003
  • [24] C. Gungoren, O. Ozdemir, X. Wang, S. Ozkan, and J. Miller, “Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system”, Ultrason. Sonochem., vol. 52, pp. 446–454, 2019. https://doi.org/10.1016/j.ultsonch.2018.12.023
  • [25] S.A. Hassanzadeh, S.A. Sajjady, H. Gholami, S. Amini, and S.G. Ozkan, “An Improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation”, Minerals, vol. 10 ,p. 619, 2020. https://doi.org/10.3390/min10070619
  • [26] W.Z. Kang, H.X. Xun, and J.T. Chen, “Study of enhanced fine coal de-sulphurization and de-ashing by ultrasonic flotation”. Journal of China University of Mining and Technology, vol. 17, pp. 358-362, 2007. https://doi.org/10.1016/S1006-1266(07)60105-9
  • [27] E.Y. Yazıcı, H. Deveci, I. Alp, and T. Uslu, “Generation of hydrogen peroxide and removal of cyanide from solutions using ultrasonic waves”. Desalination, vol. 216, pp. 209–221, 2007. https://doi.org/10.1016/j.desal.2006.12.018
  • [28] B. Ambedkar, T.N. Chintala, R. Nagarajan, and S. Jayanti, “Feasibility of using ultrasound- assisted process for sulfur and ash removal from coal”. Chem. Eng. And Process: Process Intensif, vol. 50, pp. 236–246, 2011. https://doi.org/10.1016/j.cep.2011.02.008
  • [29] B. Ambedkar, “Ultrasonic coal-wash for de-ashing and de-sulfurization: Experimental investigation and mechanistic modeling”, Springer-Verlag, Berlin Heidelberg, 2012.
  • [30] M.M. Royaei, E. Jorjani, and S.C. Chelgani, “Combination of microwave and ultrasonic irradiations as a pretreatment method to produce ultraclean coal”. International Journal of Coal Preparation and Utilization , vol. 32, pp. 143–155, 2012. https://doi.org/10.1080/19392699.2012.663024
  • [31] H.X. Zhang, H.J. Bai, X.S. Dong, and Z.Z. Wang, “Enhanced desulfurizing flotation of different size fractions of high sulfur coal using sono electrochemical method”. Fuel Processing Technology, vol. 97, pp. 9–14, 2012. https://doi.org/10.1016/j.fuproc.2012.01.005
  • [32] Q. Cao, J. Cheng, Q. Feng, S. Wen, and B. Luo, “Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite”, Powder Technol., vol. 311, pp. 390–397, 2017. https://doi.org/10.1016/j.powtec.2017.01.069
  • [33] K. Yasuda, H. Matsushima, and Y. Asakura, “Generation and reduction of bulk nanobubbles by ultrasonic irradiation”. Chemical Engineering Science, vol. 195, pp. 455–461, 2019. https://doi.org/10.1016/j.ces.2018.09.044
  • [34] H. Wang, W. Yang, X. Yan, L. Wang, Y. Wang, and H. Zhang, “Regulation of bubble size in flotation: A review”. Journal of Environmental Chemical Engineering, vol. 8, p. 104070, 2020. https://doi.org/10.1016/j.jece.2020.104070
  • [35] J.A. Finch, and G.S. Dobby, “Column flotation”, Pergamon Pres, Oxford. 1990
  • [36] D. Tao, G.H. Luttrell, and R.H. Yoon, “A parametric study of froth stability and its effect on column flotation of fine particles”, International Journal of Mineral Processing, vol.59, pp.25-43, 2000.
  • [37] H. Sutcu, T. Toroglu, and O. Dalahmetoglu, “Recovery of coal from waste fines by column flotation”, Journal of Solid Waste Technology and Management, vol.29, No.3, pp.168-178, 2003.
  • [38] H. Hacıfazlıoğlu, and H. Sutcu, “Optimization of some parameters in column flotation a comparison of conventional cell and column cell in terms of flotation performance”, Journal of The Chinese Institue of Chemical Engineers, vol.38, pp.287- 293i 2007.
  • [39] C. Gungoren, Y. Baktarhan, I. Demir,and S.G, Ozkan. “Enhancement of galena-potassium ethyl xanthate flotation system by low power ultrasound”, Trans. Nonferrous Met. Soc. China, vol. 30, pp. 1102−1110, 2020. https://doi.org/10.1016/S1003-6326(20)65281-5
  • [40] Z.A. Zhou, Z. Xu, J.A. Finch, J.H. Masliyah, and R.S. Chow, “On the role of cavitation in particle collection in flotation – A critical review”. II, Miner. Eng., vol. 22, pp. 419–433, 2009. https://doi.org/10.1016/j.mineng.2008.12.010
  • [41] H. Kursun, and U. Ulusoy, “Zinc recovery from a lead–zinc–copper ore by ultrasonically assisted column flotation”, Particul. Sci. Technol., vol. 33, pp. 349–356, 2015. https://doi.org/10.1080/02726351.2014.970314