Çatı Üstü PV Elektrik Üretim Potansiyelinin Belirlenmesi: Şanlıurfa Örneği

Şanlıurfa’nın yıl boyunca günlük ortalama güneş ışınım değeri yaklaşık 5.0 kWh/m2 ‘dir. Bu potansiyeli değerlendirmek amacıyla çatı üstü fotovoltaik panellerin yıllık enerji üretim değerleri hesaplanmıştır. Bu analiz için Harran Üniversitesine bağlı Şanlıurfa Teknik Bilimler Meslek Yüksekokulu binaları seçilmiştir. Hesaplamalarda en yaygın kullanılan üç farklı Fotovoltaik (PV) panel teknolojisi seçilmiştir. Bunlar mono-Si, p-Si ve CdTe ‘dür. Ayrıca bu çalışmada, aylık ortalama PV verimleri ve panel yüzey sıcaklıkları hesaplanmıştır. Çalışmanın sonucunda; incelenen PV paneller arasında yıllık bazda maksimum elektrik enerjisi üretiminin mono-Si panellerden elde edilebileceği görülmüştür. Mono-Si panelin ortalama birim alanda üretilebileceği maksimum elektrik enerjisi yaklaşık 345 kWh’tir. p-Si ve CdTe PV paneller ile yıllık elektrik enerji üretimi sırasıyla yaklaşık 311 kWh/m2 ve 234 kWh/m2 olarak bulunmuştur.

___

  • [1] Green, M. A. et al. (2019). Solar cell efficiency tables (Version 53). Prog Photovolt Res Appl., 27: 3– 12.
  • [2] https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/Turkiye-Gunluk-Guneslenme-Suresi.pdf
  • [3] https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/Turkiye-Yillik-G%C3%BCnes-Radyasyonu.pdf
  • [4] Ordonez J., Jadraque E., Alegre J., ve Martinez G., (2010). Analysis of the Photovoltaic Solar Energy Capacity of Residential Rooftops in Andalusia (Spain), Renewable and Sustainable Energy Reviews,vol.14, pp.2122–30
  • [5] Shukla A. K., Sudhakar K., Baredar P., (2016). Simulation and performance analysis of 110 kWp grid-connected photovoltaic system for residential building in India: A comparativeanalysis of various PV technology, Energy Reports, vol.2, pp.82–88
  • [6] Wittkopf S., Valliappan S., Liu L., Ang K. S., Cheng S. C. J., (2012). Analytical performance monitoring of a 142.5 kWp grid connected rooftop BIPV system in Singapore, Renew. Energy,vol.47, pp.9–20.
  • [7] Carr A., Pryor T., (2004). A comparison of the performance of different PV module types in temperate climates, J Solar Energy, 285: 76.
  • [8] Ghazali M. A. and Abdul Rahman A.M., (2012). The Performance of Three Different Solar Panels for Solar Electricity Applying Solar Tracking Device under the Malaysian Climate Condition, Energy and Environment Research, 2:1
  • [9] Sharma V., Kumar A., Sastry O.S., Chandel S.S., (2013). Performance assessment of different solar photovoltaic technologies under similar outdoor conditions, Energy, vol. 58, pp.511-518
  • [10] Baharwani V., Meena N., Sharma A., Stephen R. B., Mohanty P., (2015). Comparative Performance Assessment of different Solar PV Module Technologies, International Journal of Innovations in Engineering and Technology, vol. 5 Issue 1
  • [11] Ferrada P., Araya F., Marzo A., Fuentealba E., (2015). Performance analysis of photovoltaic systems of two different technologies in a coastal desert climate zone of Chile, Solar Energy, vol. 114, pp. 356–363
  • [12] Chukwu G. U., Chigbo N. I., Onyenonachi F. C., Udoinyang I. E., (2016) Comparative Study of Photovoltaic Modules and Their Performance in the Tropics: A Case Study in Nigeria, International Journal of Innovative Environmental Studies Research, 4(4):21-28
  • [13] Özcan, Ö , İzgı̇, E . (2020). Şebekeye Bağlı Fotovoltaik Çatı Sisteminin Karşılaştırmalı Performans Analizi . Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi , 23 (3) , 127-140 .
  • [14] Üçgül, İ., Tüysüzoğlu, E.,Yakut, M. Z. (2014) PV Çatı Uygulaması için Enerji Hesaplaması ve Ekonomik Analizi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 18(2), 1-6
  • [15] Cristofari C., Poggi P., Notton G., Muselli M. Thermal modeling of a photovoltaic module. In: Proceedings of Sixth IASTED International Conference on ‘‘Modeling, Simulation, and Optimization”, 2006. “September 11–13, Gaborone, Botswana, pp. 273–278.
  • [16] Skoplaki E. and Palyvos J. A., (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/ power correlations, Solar Energy, vol. 83, pp. 614-624
  • [17] Evans D.L., 1981. “Simplified method for predicting photovoltaic array output”, Solar Energy,vol. 27, pp.555–560.
  • [18] Muzathik A. M., (2014). Photovoltaic modules operating temperature estimation using a simple correlation, International Journal of Energy Engineering, vol. 4, Iss.4, pp. 151-158
  • [19] Duffie J.A., Beckman W.A., (1991). Solar Engineering Thermal Process. Wiley-Interscience, New York.
  • [20] Vasisht M. S., Srinivasan J., Ramasesha S.K., (2016). Performance of solar photovoltaic installations: Effect of seasonal variations, Solar Energy 131: 39-46
  • [21] Klein, S. A., (1977). Calculation of Monthly Average Insolation on Tilted Surfaces, Solar Energy, 19, 325
Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi-Cover
  • ISSN: 1309-8640
  • Başlangıç: 2009
  • Yayıncı: DÜ Mühendislik Fakültesi / Dicle Üniversitesi