Silika Aerojel Katkılı Hibrit Silis Dumanı Harçlarının Mekanik, Por Yapısı,Termal İletkenlik ve Mikro Yapı Özellikleri

Çimento esaslı karışımlarda yüksek miktarda silika aerojel kullanımının çimento esaslı malzemelerin termalyalıtım özelliklerine üstün düzeyde katkı sunduğu iyi bilinen bir gerçektir. Bununla birlikte, günümüz koşullarındasilika aerojellerin üretim maliyeti geleneksel yalıtım malzemelerine kıyasla oldukça yüksektir. Bu çalışma, düşükkatkı oranlarında silika aerojel tozu içeren alkali-aktive edilmiş hibrit silis dumanı harç özelliklerineodaklanmaktadır. Bu amaçla aerojel katkı oranları çimento ağırlığınca %0, %0.25 ve %0.5 düzeylerinde tasarlandıve harç karışımlarının alkali aktivasyonu çimento ağırlığınca %0.1 ve %0.2 dozajlarındaki sodyum karbonat(Na2CO3) ile gerçekleştirildi. 2, 7 ve 28 günlük kür sürelerinin tamamlanmasından sonra, az miktardaki silikaaerojel ilavesinin hibrit harç numunelerinin mekanik, termal iletkenlik, por yapısı özellikleri ve mikro yapımorfolojisi üzerindeki etkisi ayrıntılı olarak araştırılmıştır. Deneysel sonuçlar, % 0.25 aerojel katkılı numunelerdemaksimum % 2.4'lük basınç dayanımı düşüşüne karşın numunelerin termal yalıtım özelliklerinin % 28 düzeyindegelişebildiğini göstermektedir. Hibrit silis dumanı harçlarında jel gözenek oluşumunun yüksek seviyesine (≈% 40)bağlı olarak, silika aerojel ilavesinin harç numunelerinin mekanik özellikler üzerindeki olumsuz etkisisınırlanmaktadır. Bu çalışma hibrit silis dumanı harç karışımlarında silika aerojellerin kullanımı hakkında yeni birbakış açısı sunmaktadır.

Mechanical, Pore Structure, Thermal Conductivity and Microstructure Properties of Silica Aerogel-Incorporated Hybrid Silica Fume Mortars

It is a well-known fact that the use of a high amount of silica aerogel in cement-based mixtures contributessignificantly to the thermal insulation properties of cement-based materials. However, the current manufacturingcost of silica aerogels is quite expensive compared to traditional insulating materials. This study focuses on theproperties of alkali-activated hybrid silica fume mixtures containing silica aerogel powder at a low content rate.For this purpose, aerogel inclusion ratios were designed at 0%, 0.25% and 0.5% by weight of binder and thealkaline activation of the mortar mixtures was carried out with sodium carbonate (Na2CO3) at dosage rates of 0.1%and 0.2%, by weight of binder. After 2, 7 and 28 days of curing, the effect of the inclusion of a small amount ofsilica aerogel powder on the mechanical, thermal conductivity, pore structure properties and microstructuremorphology of the hybrid silica fume mortar samples were investigated in detail. Experimental results show thatthe thermal insulation properties of the samples can be improved by 28% with a maximum compressive strengthreduction of 2.4% in 0.25% aerogel-Incorporated samples. Due to the high level of gel pore formation (≈40%) inhybrid silica fume mortars, the negative effect of silica aerogel addition on the mechanical properties of thesamples is limited. This study provides a new perspective on the use of silica aerogels in hybrid silica fume mortarmixtures.

___

  • [1]. Arbi, K., Palomo, A., Fernández-Jiménez, A. (2013). Alkali-activated blends of calcium aluminate cement and slag/diatomite, Ceramics International, 39, 9237–9245.
  • [2]. Cheah, C. B., Tan, L. E., Ramli, M. (2019). The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume, Composites Part B,160, 558–572.
  • [3]. Madani, H., Norouzifar, M. N., Rostami, J. (2018). The synergistic effect of pumice and silica fume on the durability and mechanical characteristics of ecofriendly concrete, Construction and Building Materials, 174, 356–368.
  • [4]. Imbabi, M. S., Carrigan, C., McKenna, S. (2012). Trends and developments in green cement and concrete technology, International Journal of Sustainable Built Environment,1, 194–216.
  • [5]. Liu, Y., Shi, C., Zhang, Z., Li, N. (2019). An overview on the reuse of waste glasses in alkaliactivated materials, Resources, Conservation and Recycling, 144, 297–309.
  • [6]. Schröfl, C., Gruber, M., Plank, J. (2012). Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultrahigh performance concrete (UHPC), Cement and Concrete Research, 42, 1401–1408.
  • [7]. Gesoglu, M, Guneyisi, E., Asaad, D.S. , Muhyaddin, G.F. (2016). Properties of low binder ultra-high performance cementitious composites: Comparison of nanosilica and microsilica, Construction and Building Materials, 102,706–713.
  • [8]. Zelic, J., Rusic, D., Veza, D. , Krstulovic, R. (2000). The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration, Cement and Concrete Research, 30, 655– 1662.
  • [9]. Rossen, J.E., Lothenbach, B., Scrivener, K. L. (2015). Composition of C–S–H in pastes with increasing levels of silica fume addition, Cement and Concrete Research, 75, 14–22.
  • [10]. Ng, S., Jelle, B. P., Stæhli, T. (2016). Calcined clays as binder for thermal insulating and structural aerogel incorporated mortar, Cement and Concrete Composites, 72, 213–221.
  • [11]. Luo, Y., Jiang, Y. ,Feng, J. (2019). Synthesis of white cement bonded porous fumed silica-based composite for thermal insulation with low thermal conductivity via a facile cast-in-place approach, Construction and Building Materials, 206, 620–629.
  • [12]. Bostancı, L. , Sola, O.C. (2018). Mechanical Properties and Thermal Conductivity of AerogelIncorporated Alkali-Activated Slag Mortars, Advances in Civil Engineering, 2018, 1-9.
  • [13]. Szodrai, F., Lakatos, Á. , Kalmár, F. (2016). Analysis of the change of the specific heat loss coefficient of buildings resulted by the variation of the geometry and the moisture load, Energy, 115, 820–829.
  • [14]. Lakatos, Á. (2019). Stability investigations of the thermal insulating performance of aerogel blanket, Energy and Buildings, 185, 103–111.
  • [15]. Huang, Y. , Niu, J.-l. (2015). Energy and visual performance of the silica aerogel glazing system in commercial buildings of Hong Kong, Construction and Building Materials, 94, 57–72.
  • [16]. Kim, S., Seo, J., Cha, J. , Kim, S. (2013). Chemical retreating for gel-typed aerogel and insulation performance of cement containing aerogel, Construction and Building Materials, 40, 501–505.
  • [17]. Cuce, E., Cuce, P. M., Wood, C. J., Riffat, S.B. (2014). Toward aerogel based thermal superinsulation in buildings: A comprehensive review, Renewable and Sustainable Energy Reviews, 34, 273–299.
  • [18]. Dorcheh, A.S., Abbasi, M.H. (2008). Silica aerogel; synthesis, properties and characterization, Journal of Materials Processing Technology, 199,10–26.
  • [19]. Wang, L., Liu, P., Jing, Q., Liu, Y., Wang, W., Zhang, Y., Li, Z. (2018). Strength properties and thermal conductivity of concrete with the addition of expanded perlite filled with aerogel, Construction and Building Materials, 188, 747–757.
  • [20]. Ng, S., Jelle, B. P., Sandberg, L. I. C., Gao, T., Wallevik, O. H. (2015). Experimental investigations of aerogel-incorporated ultra-high-performance concrete, Construction and Building Materials, 77, 307–316.
  • [21]. Liu, Z. H., Ding, Y.D., Wang, F., Deng, Z.P. (2016). Thermal insulation material based on SiO2 aerogel, Construction and Building Materials, 122, 548–555.
  • [22]. Al Zaidi, A. K. A., Demirel, B. , Atis, C.D. (2019). Effect of different storage methods on thermal and mechanicalproperties of mortar containing aerogel, fly ash and nano-silica, Construction and Building Materials, 199, 501–507.
  • [23]. TSI, TS EN 197-1. Cement-Part 1: Compositions and conformity criteria for common cements. Ankara, Turkey: Turkish Standard Institute; 2002.
  • [24]. TSE, TS EN 196-1. Methods of testing cement-Part 1: Determination of strength. Ankara, Turkey: Turkish Standard Institute; 2009 [in Turkish].
  • [25]. TS EN 1015-11 Methods of Test for Mortar for Masonry – Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar.
  • [26]. Bilim, C. , Atis, C.D. (2012). Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag, Construction and Building Materials, 28, pp. 708–712.
  • [27]. Gao, T., Jelle, B. P., Gustavsen, A., Jacobsen, S. (2014). Aerogel-incorporated concrete: An experimental study, Construction and Building Materials, 52,130–136.
  • [28]. Woignier, T., Phalippou, J. (1988). Mechanical strength ofsilica aerogels, Journal of NonCrystalline Solids, 10, 404–408.
  • [29]. Júlio, M.F., Soares, A., Ilharco, L. M., Flores-Colen, I., de Bito, J. (2016). Silica-based aerogels as aggregates for cement-based thermal renders, Cement and Concrete Composites, 72, 309–318.
  • [30]. Bostanci, L., Ustundag, O., Sola, O. C., Uysal, M., (2020). ffect of curing methods and scrap tyre addition on properties of mortars, Građevinar, 72, 4, 311-322.
  • [31]. Bostanci, L., Ustundag, O., Sola, O., Uysal, M., (2019). ffect of various curing methods and addition of silica aerogel on mortar properties, Građevinar, 71, 8, 651-661.
  • [32]. Hanif, A., Lu, Z., Cheng, Y., Diao, S., Li, Z. (2017). Effects of ifferent lightweight functional fillers for use in ementitious composites, International Journal of Concrete Structures and Materials, 11, 99–113.
  • [33]. Lu, J.-X. , Poon, C.S. (2018). Improvement of earlyage properties for glass-cement mortar by adding nanosilica, Cement and Concrete Composites, 89, 18–30.
  • [34]. Wyrzykowski, M., Kiesewetter, R., Kaufmann, J., Baumann, R., Lura, P. (2014). Pore structure of mortars with cellulose ether additions – Mercury intrusion porosimetry study, Cement and Concrete Composites, 53, 25–34.