Bulanık Mantık Tip-3 Kullanılarak Mikro Şebeke Frekans Regülasyonu

Geleneksel enerji kaynaklarının tükenmesi ve çevreye zarar vermesi gibi dezavantajlar, yenilenebilir enerji kaynaklarının kullanımının artmasına neden olmuştur. Yenilenebilir enerji kaynakları süreksizlik sorunuyla karşı karşıyadır. Bu sorunu çözmek için mikro şebeke sistemleri önerilmektedir. Mikro şebekeler güç dengesizliği, jeneratör hızı ve yük değişiklikleri gibi durumlarda frekans problemleri yaşayabilir, bu da teknik ve ekonomik sorunlara yol açar. Bu makalede, güç dengesizliği sorununu çözmek için tip-3 bulanık mantık kontrolör (T3-BMK) temelli bir kontrol şeması sunulmaktadır. Bu kontrol şeması, matematiksel modellere dayanmaz ve değişken hava koşulları ve üretim ve tüketimdeki değişimi hesaba katarak kontrol etme imkanı sağlar. Önerilen kontrol şeması, kurallara ek olarak bulanık kümelerin parametrelerini hızlı bir şekilde ayarlamak için tasarlanmıştır. Ayrıca, önerilen T3-BMK tabanlı kontrol şeması, güç dengesizliklerini etkin bir şekilde çözebilir ve mikro şebekelerin istikrarını artırabilir. Bu çalışmada, önerilen yöntem, bir mikro şebeke üzerinde gerçekleştirilen bir vaka çalışmasıyla test edilmiş ve T1-BMK, T2-BMK ve klasik PID yöntemleriyle karşılaştırılmıştır. Elde edilen sonuçlar, önerilen şemanın frekans stabilizasyon performansının diğer yöntemlere göre daha iyi olduğunu göstermektedir. Ayrıca, değişken yük, bilinmeyen dinamikler ve yenilenebilir enerji kaynaklarındaki değişiklikler gibi zorlu koşullar altında da başarılı bir şekilde frekans stabilizasyonu sağlayabilmektedir.

Microgrid Frequency Regulation Using Fuzzy Logic Type-3

The rise in use of renewable energy sources can be attributed to the presence of drawbacks, such as the depletion of conventional energy sources and the adverse impact on the environment. Renewable energy sources have the challenge of intermittency. In order to address this issue, the implementation of microgrid systems is suggested. Frequency issues can arise in microgrids due to factors such as power imbalances, fluctuations in generator speed, and changes in load. These issues can lead to both technical and economic challenges. This article presents a control strategy that utilizes a type-3 fuzzy logic controller (FLC) to address the issue of power imbalance. The control technique in question does not rely on mathematical models and offers the potential to incorporate changeable weather conditions as well as fluctuations in production and consumption. The control technique that has been proposed is specifically designed to efficiently modify the parameters of fuzzy sets, as well as the associated rules. Additionally, the control method based on T3-FLC that has been suggested demonstrates the capacity to efficiently address power imbalances and enhance the stability of microgrids. The suggested methodology has undergone testing through a case study conducted on a microgrid, and has been compared to T1-FLC, T2-FLC, and standard PID approaches. The results collected from the study demonstrate that the proposed system exhibits superior frequency stabilization performance compared to alternative techniques. Furthermore, it has the capability to effectively ensure frequency stabilization in demanding scenarios characterized by fluctuating loads, uncertain dynamics, and variations in renewable energy sources.

___

  • [1] Razmjoo, A., Kaigutha, L. G., Rad, M. V., Marzband, M., Davarpanah, A., & Denai, M. (2021). A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renewable Energy, 164, 46-57.
  • [2] Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and sustainable energy reviews, 39, 748-764.
  • [3] Karunathilake, H., Perera, P., Ruparathna, R., Hewage, K., & Sadiq, R. (2018). Renewable energy integration into community energy systems: A case study of new urban residential development. Journal of Cleaner Production, 173, 292-307.
  • [4] Anwar, A., Siddique, M., Dogan, E., & Sharif, A. (2021). The moderating role of renewable and non-renewable energy in environment-income nexus for ASEAN countries: Evidence from Method of Moments Quantile Regression. Renewable Energy, 164, 956-967.
  • [5] Holzleitner, M., Moser, S., & Puschnigg, S. (2020). Evaluation of the impact of the new Renewable Energy Directive 2018/2001 on third-party access to district heating networks to enforce the feed-in of industrial waste heat. Utilities Policy, 66, 101088.
  • [6] Hatziargyriou, Nikos, ed. Microgrids: architectures and control. John Wiley & Sons, 2014.
  • [7] Mondal A, Illindala MS. Improved frequency regulation in an islanded mixed source microgrid through coordinated operation of DERs and smart loads. IEEE Trans Ind Appl. 2018;54:112–120.
  • [8] Shahzad, S., Abbasi, M. A., Ali, H., Iqbal, M., Munir, R., & Kilic, H. (2023). Possibilities, Challenges, and Future Opportunities of Microgrids: A Review. Sustainability, 15(8), 6366.
  • [9] R. Majumder, "MODELING, STABILITY ANALYSIS AND CONTROL OF MICROGRID," Doctor of Philosophy Dissertation, Faculty of Build and Environment Engineering, Queensland University of Technology, Queensland, Australia, 2010.
  • [10] Gulzar, M. M., Iqbal, M., Shahzad, S., Muqeet, H. A., Shahzad, M., & Hussain, M. M. (2022). Load frequency control (LFC) strategies in renewable energy-based hybrid power systems: A review. Energies, 15(10), 3488.
  • [11] Pepermans, Guido, et al. "Distributed generation: definition, benefits and issues." Energy policy 33.6 (2005): 787-798.
  • [12] Zhao H, Hong M, Lin W, et al. Voltage and frequency regulation of microgrid with battery energy storage systems. IEEE Trans Smart Grid. 2017;99:1–12
  • [13] Mondal A, Illindala MS. Improved frequency regulation in an islanded mixed source microgrid through coordinated operation of DERs and smart loads. IEEE Trans Ind Appl. 2018;54:112–120.
  • [14] Zhao J, Lyu X, Fu Y, et al. Coordinated frequency regulation strategy of wind/photovoltaic/diesel microgrid based on DFIG variable coefficient combined virtual inertia and primary frequency control. IEEE Trans Energy Conver. 2016;8969:1–1.
  • [18] V. A. K. Pappu, B. H. Chowdhury, and R. Bhatt, "Implementing frequency regulation capability in a solar photovoltaic power plant," in North American Power Symposium (NAPS), 2010, 2010, pp. 1-6.
  • [19] R. Majumder, "MODELING, STABILITY ANALYSIS AND CONTROL OF MICROGRID," Doctor of Philosophy Dissertation, Faculty of Build and Environment Engineering, Queensland University of Technology, Queensland, Australia, 2010.
  • [15] Moghadam, Mohammad R. Vedady, Richard TB Ma, and Rui Zhang. "Distributed frequency control in smart grids via randomized demand response." IEEE Transactions on Smart Grid 5.6 (2014): 2798-2809.
  • [16] Lekshmi, R. R., et al. "Frequency based demand management system in residential context." Bonfring Internation Journal of Industrial Engineering and Management Science 4.2 (2014): 57-61.
  • [22] Rafiee, A., Batmani, Y., Ahmadi, F., & Bevrani, H. (2021). Robust load-frequency control in islanded microgrids: Virtual synchronous generator concept and quantitative feedback theory. IEEE Transactions on Power Systems, 36(6), 5408-5416.
  • [17] Díaz-González, F., Hau, M., Sumper, A., & Gomis-Bellmunt, O. (2015). Coordinated operation of wind turbines and flywheel storage for primary frequency control support. International Journal of Electrical Power & Energy Systems, 68, 313-326.
  • [18] Gong, K., Lenz, E., & Konigorski, U. (2015, June). Decentralized frequency control of a DDG-PV microgrid in islanded mode. In 2015 23rd Mediterranean Conference on Control and Automation (MED) (pp. 292-297). IEEE.
  • [19] Kiliç, H., Khaki, B., Gumuş, B., Yilmaz, M., & Asker, M. E. (2018, November). Stability analysis of islanded microgrid with EVs. In 2018 Smart Grid Conference (SGC) (pp. 1-5). IEEE.
  • [20] Yildirim, B. (2021). Advanced controller design based on gain and phase margin for microgrid containing PV/WTG/Fuel cell/Electrolyzer/BESS. International Journal of Hydrogen Energy, 46(30), 16481-16493.
  • [21] Gholami S, Saha S, Aldeen M. Fault tolerant control of electronically coupled distributed energy resources in microgrid systems. Int J Electrical Power Energy Syst. 2018;95:327–340.
  • [22] Pradhan C, Bhende CN, Samanta AK. Adaptive virtual inertia-based frequency regulation in wind power systems. Renewable Energy. 2018;115:558–574
  • [23] Sanjari MJ, Gharehpetian GB. Small signal stability based fuzzy potential function proposal for secondary frequency and voltage control of islanded microgrid. Electr Power Compon Sys. 2013;41:485–499.
  • [24] Keshtkar, H., Mohammadi, F. D., Ghorbani, J., Solanki, J., & Feliachi, A. (2014, May). Proposing an improved optimal LQR controller for frequency regulation of a smart microgrid in case of cyber intrusions. In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1-6). IEEE.
  • [25] Khooban, M. H., Niknam, T., Blaabjerg, F., Davari, P., & Dragicevic, T. (2016). A robust adaptive load frequency control for micro-grids. ISA transactions, 65, 220-229.
  • [26] Zhang, J., Gao, Y., Yu, P., Li, B., Yang, Y., Shi, Y., & Zhao, L. (2018). Coordination control of multiple micro sources in islanded microgrid based on differential games theory. International Journal of Electrical Power & Energy Systems, 97, 11-16.
  • [27] Sedighizadeh, M., Esmaili, M., & Eisapour-Moarref, A. (2017). Voltage and frequency regulation in autonomous microgrids using Hybrid Big Bang-Big Crunch algorithm. Applied Soft Computing, 52, 176-189.
  • [28] Khooban, M. H., Dragicevic, T., Blaabjerg, F., & Delimar, M. (2017). Shipboard microgrids: A novel approach to load frequency control. IEEE Transactions on Sustainable Energy, 9(2), 843-852.
  • [29] Khokhar, B., Dahiya, S., & Parmar, K. S. (2021). Load frequency control of a microgrid employing a 2D Sine Logistic map based chaotic sine cosine algorithm. Applied Soft Computing, 109, 107564.
  • [30] Abazari, A., Monsef, H., & Wu, B. (2019). Coordination strategies of distributed energy resources including FESS, DEG, FC and WTG in load frequency control (LFC) scheme of hybrid isolated micro-grid. International Journal of Electrical Power & Energy Systems, 109, 535-547.
  • [31] Yildirim, B., Razmi, P., Fathollahi, A., Gheisarnejad, M., & Khooban, M. H. (2023). Neuromorphic deep learning frequency regulation in stand-alone microgrids. Applied Soft Computing, 144, 110418.
  • [32] YILDIRIM, B. (2021). Bir Mikro Şebekenin Yük Frekans Kontrolü için Tamsayı Derece Yaklaşımlı Kesir Dereceli PID Kontrolörün Optimizasyonu. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 12(1), 79-87.
  • [33] Yildirim, B., Gheisarnejad, M., & Khooban, M. H. (2021). A robust non-integer controller design for load frequency control in modern marine power grids. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(4), 852-866.
  • [34] Yıldız, S., Gunduz, H., Yildirim, B., & Özdemir, M. T. (2022). An islanded microgrid energy system with an innovative frequency controller integrating hydrogen-fuel cell. Fuel, 326, 125005.
  • [35] Kiliç, Heybet, et al. "A Robust Data-Driven Approach for Fault Detection in Photovoltaic Arrays." Proceedings of the 10th IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe (2020).
  • [36] Heidary, J., Gheisarnejad, M., Rastegar, H., & Khooban, M. H. (2022). Survey on microgrids frequency regulation: Modeling and control systems. Electric Power Systems Research, 213, 108719.
  • [37] Fan, W., Mohammadzadeh, A., Kausar, N., Pamucar, D., & Id, N. A. D. (2022). A New Type-3 Fuzzy PID for Energy Management in Microgrids. Advances in Mathematical Physics, 2022.
  • [38] Shakibjoo, A. D., Moradzadeh, M., Din, S. U., Mohammadzadeh, A., Mosavi, A. H., & Vandevelde, L. (2021). Optimized type-2 fuzzy frequency control for multi-area power systems. IEEE access, 10, 6989-7002.