Zemin güçlendirmede maksimum dayanım için optimum bazalt fiber oranının belirlenmesi

Düşük dayanımlı killeri stabilize etmek amacıyla sönmüş kireç, uçucu kül, silis dumanı, tüf, mermer tozu gibi katkı malzemelerinin kullanımı oldukça eski ve geleneksel bir uygulamadır. Ancak yeni teknolojik ürünlerin ortaya çıkışıyla birlikte bu geleneksel stabilizasyon yöntemleri yerini özellikle yapay fiber gibi ürünlerle yapılan güçlendirme yöntemlerine bırakmaya başlamıştır. Zemin iyileştirmede kullanılan, çevre dostu, doğal, doğada bol miktarda bulunan bu malzemelerden biri de bazalt fiberdir ve kullanımları gün geçtikçe yaygınlaşmaktadır. Zemin güçlendirmede bazalt fiber kullanımının başarısı kullanılan bazalt fiberin boyutu ve oranı ile ilgilidir ve yapılan bilimsel çalışmalar bu konularda yoğunlaşmıştır. Bu çalışmanın amacı, bazalt fiber ile güçlendirilen yüksek plastisiteli bentonit kilinde bazalt fiber oranının dayanıma olan etkilerinin incelenmesidir. Bu amaçla bir dizi deneysel çalışma gerçekleştirilmiştir. 6 mm uzunluğundaki bazalt fiberlerin kile farklı oranlarda eklenmesi ve optimum su içeriğinde sıkıştırılmasıyla hazırlanan silindirik örneklerde serbest basınç deneyleri gerçekleştirilmiş ve zeminin dayanımında meydana gelen değişimler belirlenmiştir. Çalışmanın sonuçları, 6 mm uzunluğundaki bazalt fiber ile güçlendirilen bentonit kilinde maksimum dayanımın %4 bazalt fiber oranında elde edildiğini, bu orandan daha yüksek bazalt fiber oranlarında ise dayanımda azalmalar oluştuğunu göstermiştir.

Determination of the optimum basalt fiber ratio for maximum strength in soil reinforcement

The use of additives such as slaked lime, fly ash, silica fume, tuff, marble dust to stabilize low strength clays is a very old and traditional practice. However, with the emergence of new technological products, these traditional stabilization methods have begun to give way to reinforcement methods, especially with products such as artificial fiber. One of these eco-friendly, natural and abundant materials used in soil reinforcement is basalt fiber, and its use is becoming more common day by day. The success of using basalt fiber in soil reinforcement is related to the size and ratio of the basalt fiber used, and scientific studies have focused on these issues. The aim of this study is to examine the effects of basalt fiber ratio on strength in high plasticity bentonite clay reinforced with basalt fiber. For this purpose, a number of experimental studies have been carried out. Unconfined compressive tests were carried out on cylindrical samples prepared by adding 6 mm long basalt fibers to clay at different rates and compressing them at optimum water content, and the changes in the strength of the soil were determined. The results of the study showed that the maximum strength was obtained at the rate of 4% basalt fiber in bentonite clay reinforced with basalt fiber of 6 mm length, while there was a decrease in strength at basalt fiber ratios higher than this ratio.

___

  • [1] Ö. Ekincioğlu, “Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı: Bir optimum tasarım”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, 2003.
  • [2] M. Aral, “Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı-bir optimum tasarım”, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, 2006.
  • [3] C. Tang, B. Shi, W. Gao, F. Chen, Y. Cai, “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil”, Geotextiles and Geomembranes, 25(3), 194-202, 2007, https://doi.org/10.1016/j.geotexmem.2006.11.002
  • [4] M.R. Abdi, A., Parsapajouh, M.A. Arjomand, “Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays”, International Journal of Civil Engineering, 6(4), 284-292, 2008.
  • [5] F. Ahmad, F. Bateni, M. Azmi, “Performance evaluation of silty sand reinforced with fibres”, Geotextiles & Geomembranes, 28(1), 93-99, 2010, https://doi.org/10.1016/j.geotexmem.2009.09.017
  • [6] A. Diambra, E. Ibraim, D.M. Wood, A.R. Russell, “Fibre reinforced sands: experiments and modeling”, Geotextiles & Geomembranes, 28(3), 238-250, 2010, https://doi.org/10.1016/j.geotexmem.2009.09.010
  • [7] A.S. Zaimoglu, “Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers” Cold Regions Science and Technology, 60(1), 63-65, 2010, https://doi.org/10.1016/j.coldregions.2009.07.001
  • [8] A.R. Estabragh, A.T. Bordbar, A.A. Javadi, “Mechanical behavior of a clay soil reinforced with nylon fibers”, Geotechnical and Geological Engineering, 29(5), 899-908, 2011, https://doi.org/10.1007/s10706-011-9427-8
  • [9] S. Kinjal, A. K. Desai, C.H. Solanki, “Experimental study on the Atterberg limits of expansive soil reinforced with polyester triangular fibers”, International Journal of Engineering Research, 2012.
  • [10] P.K. Pradhan, R.K. Kar, A. Naik, “Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil”, Geotechnical and Geological Engineering, 30, 15-25, 2012, https://doi.org/10.1007/s10706-011-9445-6
  • [11] T. Eskişar, E. Karakan, S. Altun, “Effects of fibre reinforcement on liquefaction behaviour of poorly graded sands”, Procedia Engineering, 161, 538-542, 2016, https://doi.org/10.1016/j.proeng.2016.08.688
  • [12] A. Edincliler, A. Cagatay, “Weak subgrade improvement with rubber fibre inclusions”, Geosynthetics International, 20(1), 39-46, 2013, https://doi.org/10.1680/gein.12.00038
  • [13] E. Botero, A. Ossa, G. Sherwell, E. Ovando-Shelley, “Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET)”, Geotextiles and Geomembranes, 43(4), 363-369, 2015, https://doi.org/10.1016/j.geotexmem.2015.04.003
  • [14] M. Roustaei, A. Eslami, M. Ghazavi, “Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters”, Cold Regions Science and Technology, 120, 127-137, 2015, https://doi.org/10.1016/j.coldregions.2015.09.011
  • [15] B.A. Behbahani, H. Sedaghatnezhad, F. Changizi, “Engineering properties of soils reinforced by recycled polyester fiber”, Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(2), 01-07, 2016.
  • [16] M.E. Orakoglu, J. Liu, “Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil”, KSCE Journal of Civil Engineering, 21(6), 2128-2140, 2017, https://doi.org/10.1007/s12205-017-0960-8
  • [17] P.F. Amini, R. Noorzad, “ Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing”, Soil Dynamics and Earthquake Engineering, 104, 45-53, 2018, https://doi.org/10.1016/j.soildyn.2017.09.026
  • [18] H. Cui, Z. Jin, X. Bao, W. Tang, B. Dong, “Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms”, Construction and Building Materials, 189, 286-295, 2018, https://doi.org/10.1016/j.conbuildmat.2018.08.181
  • [19] M.A.M. Al-Bared, I.S.H. Harahap, A. Marto, S.V.A.N.K. Abad, M.O.A. Ali, “Undrained shear strength and microstructural characterization of treated soft soil with recycled materials”, Geomechanics and Engineering, 18(4), 427-437, 2019, https://doi.org/10.12989/gae.2019.18.4.427
  • [20] S. Lee, J. Im, G.C. Cho, I. Chang, “Laboratory triaxial test behavior of xanthan gum biopolymer treated sands”, Geomechanics and Engineering, 17(5), 445-452, 2019, https://doi.org/10.12989/gae.2019.17.5.445
  • [21] B. Fındıkçı, “Bentonit kilinin cam fiber ile iyileştirilmesi”, Yüksek Lisans Tezi, Kocaeli Üniversitesi, 2020.
  • [22] M. Valipour, P.T. Shourijeh, A. Mohammadina, “Application of recycled tire polymer fibers and glass fibers for clay reinforcement”, Transportation Geotechnics, 27, 1-14, 2021, https://doi.org/10.1016/j.trgeo.2020.100474
  • [23] Y. Wang, P. Guo, S. Shan, H. Yuan, Bi Yuan, “Study on strength influence mechanism of fiber-reinforced expansive soil using jute”, Geotechnical and Geological Engineering, 34(4), 1079-1088, 2016.
  • [24] C.P. Ndepete S. Sert, “Use of basalt fibers for soil improvement”, Acta Physica Polonica, 130(1), 355-356, 2016.
  • [25] T. Özdemir, G.E. Polat, O. Azdeniz, A. Boz, A. Sezer, “Bazalt fiber ve kireç ile güçlendirilmiş kil zeminin dayanım özellikleri”, Zemin Mekaniği ve Temel Mühendisliği 16. Ulusal Kongresi, 1025-1034, 2016.
  • [26] S. Wang, Q. Xue, W. Ma, K. Zhao, Z. Wu, “Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil”, Construction and Building Materials 272(2021), 121914, 2021, https://doi.org/10.1016/j.conbuildmat.2020.121914.
  • [27] P.G. Gisymol, K. Ramya, “A study on the effect of basalt fiber in organic soil”, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 14(4), 13-17, 2017. [28] J. Qu, C. Hu, C. Zhao, “Shear strength experimental study on basalt fiber and nano-silica reinforced Shanghai clay”, Journal of Water Resources and Water Engineering, 28(3), 186-192, 2017,
  • [29] A. Boz, A. Sezer, T. Özdemir, G.E. Hızal, O. Azdeniz Dolmacı, “Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers”, Arabian Journal of Geosciences, 11(122), 1-14, 2018, https://doi.org/10.1007/s12517-018-3458-x
  • [30] A. Kenan, A. Özocak, “Bazalt fiber katkısının siltli zeminlerin kayma direncine etkisi”, 2nd International Symposium on Natural Hazards and Disaster Management, 2018.
  • [31] Q.Y. Ma, Z.M. Cao, P. Yuan, “Experimental research on microstructure and physical-mechanical properties of expansive soil stabilized with fly ash, sand, and basalt fiber”, Advances in Materials Science & Engineering, 2018, 1-13, 2018, https://doi.org/10.1155/2018/9125127
  • [32] V.M. Pandit, C. Rohit, K. Tushar, C. Ayushi, G. Bhushan, C. Deepali, “Study of basalt fiber on compaction characteristics of black cotton soil”, 6th International Conference on Recent Trends in Engineering & Technology (ICRTET), 850-853, 2018.
  • [33] M. Küçükosmanoğlu, “Bazalt fiberin zemin iyileştirilmesinde kullanımı”, Yüksek Lisans Tezi, Sakarya Üniversitesi, Sakarya, 2019.
  • [34] P. Ocakbaşı, “Bazalt fiber katkısının killi zeminlerin drenajsız kayma direncine etkisi”, Yüksek Lisans Tezi, Sakarya Üniversitesi, 2019.
  • [35] U.M. Türkel, “Bazalt fiber ve çimento katkısının zayıf zeminlerin geoteknik özelliklerine etkisinin araştırılması”, Yüksek Lisans Tezi, Düzce Üniversitesi, 2019.
  • [36] A. Sungur, M.F. Yazıcı S.N. Keskin, “Bazalt lifi ile güçlendirilmiş killi zeminin mühendislik özellikleri üzerine deneysel araştırma”, Avrupa Bilim ve Teknoloji Dergisi Özel Sayı, 28, 895-899, 2021, https://doi.org/10.31590/ejosat.1011881
  • [37] S. Terzi, “Killi zeminlerin kayma direncine bazalt fiberin katkısı”, Yüksek Lisans Tezi, Sakarya Üniversitesi, Sakarya, 2021.
  • [38] J. Xu, Z. Wua, H. Chena, L. Shaoc, X. Zhoue, S. Wange, “Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology”, KSCE Journal of Civil Engineering 25(10), 3714-3726, 2021.
  • [39] N. Zhao, H. Wu, Z. Huang, “Strength behavior of red clay reinforced by basalt chopped fiber”, Arabian Journal of Geosciences, 14, 2021.
  • [40] O. Saran, A. Demiröz, “Zemin stabilizasyonunda bazalt fiber ve uçucu kül kullanımının araştırılması”, Konya Mühendislik Bilimleri Dergisi, 10, 495-511, 2022.
  • [41] Z. Gürocak ve Y. Aslan Topçuoğlu (2023), “Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi”, Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 688-701, https://doi.org/10.17714/gumusfenbil.1283148
  • [42] Y. Önem, “Sanayi Madenleri,” Kozan Ofset, Ankara, 2000.
  • [43] A. Akbulut, “Bentonit," MTA Eğitim Serisi-32, Ankara, 1996.
  • [44] S. Genç, “Şişen Zeminler ve Bentonit-kaolin karışımlarının şişme özellikleri,” Yüksek lisans tezi, İstanbul Üniversitesi, İstanbul, 2009.
  • [45] Y. Aslan Topçuoğlu, “Farklı katkı maddelerinin zeminlerin mühendislik özellikleri üzerindeki etkisi,” Doktora tezi, Fırat Üniversitesi, Elazığ, 2020.
  • [46] D. Saravanan, “Spinning the rocks-basalt fibers. Journal of the Institute of Engineers (India)”, Textile Engineering Division, 86, 39-45, 2006.
  • [47] H. Jamshaid, R. Mishra, “A green material from rock: basalt fiber-a review”, The Journal of The Textile Institute, 107(7), 923-937, 2015, https://doi.org/10.1080/00405000.2015.1071940
  • [48] L. Gao, G. Hu, N. Xu, J. Fu, C. Xiang, C. Yang, “ Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil”, Advances in Materials Science and Engineering, 1-8, 2015, https://doi.org/10.1155/2015/561293
  • [49] A.S. Soğancı, “The effect of polypropylene fiber in the stabilization of expansive soils”, International Journal of Geological and Environmental Engineering, 9(8), 994-997, 2015.
  • [50] P.V. Motiram, C. Rohit, K. Tushar, C. Ayushi, G. Bhushan, C Deepali, “Study of basalt fiber on compaction characteristics of black cotton soil”, International Journal for Research in Engineering Application Management (IJREAM), 850-853, 2018.
  • [51] K.Q. Tran, T. Satomi, H. Takahashi, “Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils”, Transportation Geotechnics, 16, 76-84, 2018, https://doi.org/10.1016/j.trgeo.2018.07.003
  • [52] C. Liu, Y. Lv, X. Yu, X. Wu, “Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiberreinforced soil”, Geotextiles and Geomembranes, 48(4), 581-590, 2020, https://doi.org/10.1016/j.geotexmem.2020.03.004
  • [53] Standard Test Methods for Liquid Limit. Plastic Limit and Plasticity Index of Soils. American Society for Testing and Materials, ASTM D4318-17e1, 2017.
  • [54] Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, American Society for Testing and Materials ASTM D698- 12e2, 2012.
  • [55] Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, American Society for Testing and Materials ASTM D2166M-16, 2016.