ASMA KATIN NEDEN OLDUĞU DÖŞEME SÜREKSİZLİKLERİNİN YAPISAL PERFORMANS ÜZERİNE ETKİSİ

Döşemelerde, asma kat gibi çeşitli nedenlerden dolayı süreksizlik oluşabilir. Ülkemizde asma kat yaygın olarak kullanılmaktadır. Bu çalışmada, tek ve iki yönde oluşturulan asma kat için öz değer ve statik itme analizleri yapılmıştır. Toplam altı farklı bina modeli hem X hem de Y yönü için ayrı ayrı analizler yapılmıştır. Tüm yapısal modellerde farklı performans seviyeleri için; periyotlar, etkili kütle katılım oranları, taban kesme kuvveti, elastik ve etkili rijitlik ve hedef yer değiştirme elde edilmiştir. Tüm değerlerin karşılaştırılması ve sonuçların yorumlanmasından sonra öneriler yapılmıştır. Yapıda kullanılacak asma kat nedeniyle döşeme süreksizlikleri ve yapı içerisinde kat yüksekliklerinin farklılaşması, bina savunma mekanizmasını zayıflatan riskler olarak ortaya çıkmaktadır. Çalışma, İki farklı olumsuzluk değişkeninin etkileşimini ortaya koymak ve yaygın olarak kullanılan asma kat seviyelerinin yapısal deprem davranışı üzerindeki etkisini ortaya koymak adına önemlidir.

THE EFFECT OF SLAB DISCONTINUITIES ON STRUCTURAL PERFORMANCE CAUSED BY MEZZANINE

Slabs may contain discontinuity due to various reasons such as mezzanine. Mezzanine are widely used in our country. In this study, eigen value and static pushover analyses were made for mezzanine formed by one and two direction. Totally six different structural models were analysed separately for both X and Y direction. The periods, effective mass participation ratios, base shear force, elastic and effective rigidity and target displacement for different performance level were obtained for all structural models. Suggestions were made after comparison of all values and the interpretation of the results. The slab discontinuities and the differentiation of story heights in the building due to the mezzanine appear as risks that weaken the building defence mechanism. The study is important on behalf of asserting the interaction of two different negativity variables and revealing the effect of commonly used mezzanine levels on the structural earthquake behaviour.

___

  • [1] Krawinkler H.; Seneviratna G.D.P.K., ‘’Pros and cons of a pushover analysis of seismic performance evaluation’’ Engineering Structures, 20(4-6), pp.452-464, 1998 https://doi.org/10.1016/S0141-0296(97)00092-8
  • [2] Chopra A.K., Goel R.K., ‘’A modal pushover analysis procedure for estimating seismic demands for buildings’’ Earthquake Engineering and Structural Dynamics, 31(3), pp.561-582, 2002 https://doi.org/10.1002/eqe.144
  • [3] Yakut A, ‘’Preliminary seismic performance assessment procedure for existing RC buildings’’ Engineering Structures, 26(10), pp.1447-1461,2004 https://doi.org/10.1016/j.engstruct.2004.05.011
  • [4] Isik E, ‘’Consistency of the rapid assessment method for reinforced concrete buildings’’ Earthquakes and Structures, 11(5), pp.873-885, 2016http://dx.doi.org/10.12989/eas.2016.11.5.873
  • [5] Šipoš T.K.; Hadzima-Nyarko M. ‘’Rapid seismic risk assessment’’ International Journal of Disaster Risk Reduction, 24, pp.348-360, 2017. https://doi.org/10.1016/j.ijdrr.2017.06.025
  • [6] Ozmen H.B.; Inel, M. ‘’Effect of rapid screening parameters on seismic performance of RC buildings’’ Structural Engineering Mechanics, 62(4), pp.391-399, 2017. https://doi.org/10.12989/sem.2017.62.4.391
  • [7] Işık E.; Özdemir M.; Karaşin İ.B. ‘’Performance analysis of steel structures with A3 irregularities’’ International Journal of Steel Structures, 18(3), pp.1083-1094, 2018. https://doi.org/10.1007/s13296-018-0046-6
  • [8] Isik E.; Isik M.F.; Bulbul M.A. ‘’Web based evaluation of earthquake damages for reinforced concrete buildings’’ Earthquake and Structures, 13(4), pp.387-396, 2017. https://doi.org/10.12989/eas.2017.13.4.387
  • [9] Hadzima-Nyarko M., Kalman Sipos T., ‘’Insights from existing earthquake loss assessment research in Croatia’’ Earthquakes and Structures, 13(4), pp.365-375,2017. https://doi.org/10.12989/eas.2017.13.4.401.
  • [10] Atalić J.; Šavor Novak M.; Uroš M., ‘’Seismic risk for Croatia: overview of research activities and present assessments with guidelines for the future’’ Građevinar, 71(10), pp.923-947, 2019. https://doi.org/10.14256/JCE.2732.2019.
  • [11] Harirchian E.; Hosseini S.E.A.; Jadhav K.; Kumari V.; Rasulzade S.; Işık E.; Lahmer T., ‘’A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings.’’ Journal of Building Engineering, 43, 102536,2021. https://doi.org/10.1016/j.jobe.2021.102536.
  • [12] Akdoğan R.; Karaşin, A.H., ‘’Effects of near-fault and far-fault ground motions on seismic performance of 5-story r/c building.’’ European Journal of Technique, 7(1), pp60-68. 2017.
  • [13] Dogan G.; Ecemis A.S.; Korkmaz S.Z.; Arslan M.H.; Korkmaz, H.H., ''Buildings damages after Elazığ, Turkey earthquake on January 24, 2020.'' Natural Hazards, 109(1), pp.161-200. 2021. https://doi.org/10.1007/s11069-021-04831-5.
  • [14] Khurram M.K., ‘’Betonarme binalarda kiriş ve döşeme süreksizliğinin yapısal davranışa etkisinin incelenmesi,’’ Yüksek Lisans Tezi, Sakarya Üniversitesi, Sakarya, Türkiye. 2018.
  • [15] Tekdal E., ‘’Döşeme süreksizliklerinin betonarme çerçeveli binaların davranışına etkisi,’’ Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye. 2008.
  • [16] Ayrancı M.M., ‘’Döşeme süreksizliği olan BA yapı sistemlerinin farklı bilgisayar modelleri ile analizi ve karşılaştırması’’ Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye. 2010.
  • [17] Yedikardeş U., ‘’Deprem yönetmeliğine göre yapılardaki A2 düzensizlik durumunun incelenmesi ve perde yerleşiminin düzensizliğe etkisi.’’ Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye. 2010.
  • [18] Özdemir M.Y., ‘’Yapıların deprem hesabında A2 düzensizlik durumunun incelenmesi.’’ Yüksek Lisans Tezi, Çukurova Üniversitesi, Adana, Türkiye. 2005.
  • [19] Öztürk T., ‘’Binalarda döşeme boşluklarının taşıyıcı sistem davranışına etkisi.’’ Teknik Dergi, 24(116), pp.6233-6256. 2013.
  • [20] Terzi M.; Elçi H., ''Çerçeve tipi betonarme yapılarda döşeme süreksizliklerinin kesit tesirlerine etkisi.'' Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), pp.341-349. 2006.
  • [21] Sağlıyan S.; Yön B. ''Assessment of earthquake behavior of reinforced concrete buildings with slab discontinuity.'' Turkish Journal of Science and Technology, 13(1), pp.87-92. 2018.
  • [22] Bilgin H.; Shkodrani N.; Hysenlliu M.; Ozmen H. B.; Isik E.; Harirchian, E. ‘’Damage and performance evaluation of masonry buildings constructed in 1970s during the 2019 Albania earthquakes.’’ Engineering Failure Analysis, 131, 105824.2022. https://doi.org/10.1016/j.engfailanal.2021.105824.
  • [23] Göker Ş.; Karaşin A. ‘’Depremde hasar gören kırsal yapılar için bir yapısal hasar değerlendirmesi.’’ Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 6(1), pp.31-38. 2015.
  • [24] Işık M.F.; Işık E.; Bülbül M.A., ‘’Application of iOS/Android based assessment and monitoring system for building inventory under seismic impact,’’ Građevinar, 70(12), pp.1043-1056, . 2018: https://doi.org/10.14256/JCE.1522.2015.
  • [25] Yön B.; Onat O.; Öncü, M. E.’’ Earthquake damage to nonstructural elements of reinforced concrete buildings during 2011 Van seismic sequence.’’ Journal of Performance of Constructed Facilities, 33(6),04019075.2019. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001341
  • [26] Kalman Šipoš T.; Hadzima-Nyarko M. ‘’Seismic risk of Croatian cities based on building’s vulnerability,’’ Tehnički Vjesnik, 25(4), pp.1088-1094, 2018. https://doi.org/10.17559/TV-20170708190145.
  • [27] Yön, B., Onat, O., Öncü, M. E., & Karaşi̇n, A. ‘’Failures of masonry dwelling triggered by East Anatolian Fault earthquakes in Turkey.’’ Soil Dynamics and Earthquake Engineering, 133, 106126. 2020.
  • [28] Pavić G.; Hadzima-Nyarko M.; Bulajić B. ‘’A Contribution to a UHS-based seismic risk assessment in Croatia— A case study for the City of Osijek,’’ Sustainability, 12(5), pp.1796, 2020. https://doi.org/10.3390/su12051796
  • [29] TBEC-2018. Turkey Building Earthquake Code; Disaster and Emergency Management Presidency of Turkey: Ankara, Turkey, 2018.
  • [30] Antoniou S.; Pinho R. ‘’Seismostruct–Seismic Analysis Program by Seismosoft,’’ Technical Manual and User Manual. 2003.
  • [31] Ordu E.; Özkan M.T. ‘’Three-dimensional finite element analysis of the seismic behaviour of pile foundations’’ İtü Dergisi/d, 5(2), pp.27-34. 2006.
  • [32] SeismoStruct v6.5: A computer program for static and dynamic nonlinear analysis of framed structures”. Seismosoft. 2013.
  • [33] Kutanis M.; Boru E.O.; Işık E. ‘’Alternative instrumentation schemes for the structural identification of the reinforced concrete field test structure by ambient vibration measurements’’ KSCE Journal of Civil Engineering, 21(5), pp.1793-1801, 2017. https://doi.org/10.1007/s12205-016-0758-0
  • [34] Nikoo M.; Hadzima-Nyarko M.; Khademi F.; Mohasseb S. ‘’Estimation of fundamental period of reinforced concrete shear wall buildings using self organization feature map’’ Structural Engineering Mechanics, 63(2), pp.237-249, 2017. https://doi.org/10.12989/sem.2017.63.2.237.
  • [35] Aksoylu C.; Arslan M.H. ''Çerçeve türü betonarme binaların periyod hesaplarının farklı ampirik bağıntılara göre irdelenmesi.'' Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(2), pp.569-581. 2019.
  • [36] Hsiao F.P.; Oktavianus Y., Ou Y.C. ‘’A pushover seismic analysis method for asymmetric and tall buildings’’ Journal of Chinese Institute of Engineers, 38(8), pp.991-1001., 2015. https://doi.org/10.1080/02533839.2015.1056553
  • [37] Estêvão J.M.; Oliveira C.S. ‘’A new analysis method for structural failure evaluation’’ Engineering Failure Analysis, 56, pp.573-584,2015. https://doi.org/10.1016/j.engfailanal.2014.08.009
  • [38] Casapulla C.; Argiento L.U. ‘’The comparative role of friction in local out-of-plane mechanisms of masonry buildings.’’ Pushover analysis and experimental investigation, Engineering Structures, 126, pp.158-173, 2016. https://doi.org/10.1016/j.engstruct.2016.07.036
  • [39] Ademovic N.; Hrasnica M.; Oliveira D.V. ‘’Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina’’ Engineering Structures, 50, pp.13-29,2013. https://doi.org/10.1016/j.engstruct.2012.11.031
  • [40] Ademović N.; Hrasnica M. ‘’Capacity degradation and crack pattern development in a multi-storey unreinforced masonry building’’ Građevinar, 67(04.), pp.351-361, 2015. https://doi.org/10.14256/JCE.1191.2014
  • [41] Işık E.; Özdemir M. ‘’Performance based assessment of steel frame structures by different material models’’ International Journal of Steel Structures, 17(3), pp.1021-1031, 2017. https://doi.org/10.1007/s13296-017-9013-x
  • [42] Isik E.; Kutanis M. ‘’Performance based assessment for existing residential buildings in Lake Van basin and seismicity of the region’’ Earthquake and Structures, 9(4), pp.893-910.2015. https://doi.org/10.12989/eas.2015.9.4.893
  • [43] Salihovic A.; Ademovic N. 2018: Nonlinear analysis of reinforced concrete frame under lateral load, Coupled System Mechanics, 7(3), pp.281-295, https://doi.org/10.12989/csm.2018.7.3.281.
  • [44] EN 1998-3 2005: Eurocode-8: Design of Structures for Earthquake Resistance-Part 3: Assessment and Retrofitting of Buildings; European Committee for Standardization: Bruxelles, Belgium, 2005.
  • [45] Pinto P.E.; Franchin P. ''Eurocode 8-Part 3: Assessment and retrofitting of buildings.'' In Proceedings of the Eurocode 8 Background and Applications, Dissemination of Information for Training, Lisbon, Portugal, 10–11 February 2011.