Sodyum Karbonat ile Aktive Edilmiş Cüruf Esaslı Karışımların Reolojik Özellikleri: Uçucu Kül ve Sıcaklık Etkisi

Bu çalışmada, yüksek fırın cürufu esaslı sodyum karbonatla aktive edilen karışımların reolojik özellikleri ve tiksotropik davranışları belirlenmiştir. Bu sistemlerde cürufun uçucu kül ile farklı oranlarda ikame edilmesinin ve 10 °C, 25 °C ve 40 °C gibi farklı uygulama sıcaklıklarının karışımın akma gerilmesi, plastik viskozitesi, tiksotropisi gibi reolojik özelliklerine etkisi araştırılmıştır. Çalışma sonucunda, sodyum karbonatla aktive edilen karışımların reolojik özelliklerinin çimento esaslı sistemler ile benzer özellik gösterdiği, uçucu kül ikamesi ile reolojik özelliklerin iyileştiği belirlenmiştir. Ayrıca, farklı uygulama sıcaklıklarının karışımların reolojik özelliklerini değiştirdiği, daha yüksek sıcaklıkta daha düşük akma gerilmesi ve plastik viskozite değerleri elde edildiği belirlenmiştir.

Rheological Properties of Sodium Carbonate Activated Slag-Based Mixes: Effects of Fly Ash and Temperature

This study presents the rheological properties and thixotropic behaviour of sodium carbonate-activated slag/fly ash blend systems. The effect of different application temperatures such as 10 °C, 25 °C and 40 °C and the contribution of different FA replacement ratios on the rheological response were explored. Yield stress, plastic viscosity and thixotropy of the mixes are determined. It was found that sodium carbonate activated mixes could have a similar rheological properties with the cement-based systems, enhanced results are obtained with the fly ash substitution. Moreover, different application temperatures affected the rheological properties, higher temperatures caused lower yield stress and plastic viscosity.

___

  • 1] K. L. Scrivener and R. J. Kirkpatrick, “Innovation in use and research on cementitious material,” Cem. Concr. Res., 2008, doi: 10.1016/j.cemconres.2007.09.025.
  • [2] J. N. Yankwa Djobo, A. Elimbi, H. Kouamo Tchakouté, and S. Kumar, “Mechanical properties and durability of volcanic ash based geopolymer mortars,” Constr. Build. Mater., vol. 124, pp. 606–614, 2016, doi: 10.1016/j.conbuildmat.2016.07.141.
  • [3] S. Pilehvar et al., “Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials,” Constr. Build. Mater., vol. 200, pp. 94–103, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2018.12.057.
  • [4] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, “Geopolymer technology: The current state of the art,” J. Mater. Sci., vol. 42, no. 9, pp. 2917–2933, May 2007, doi: 10.1007/s10853-006-0637-z.
  • [5] A. F. Abdalqader, F. Jin, and A. Al-Tabbaa, “Development of greener alkali-activated cement: Utilisation of sodium carbonate for activating slag and fly ash mixtures,” J. Clean. Prod., 2016, doi: 10.1016/j.jclepro.2015.12.010.
  • [6] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. J. Van Deventer, “Geopolymer technology: The current state of the art,” J. Mater. Sci., vol. 42, no. 9, pp. 2917–2933, 2007, doi: 10.1007/s10853-006-0637-z.
  • [7] J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Therm. Anal., vol. 37, no. 8, pp. 1633–1656, 1991, doi: 10.1007/BF01912193.
  • [8] A. Palomo, M. W. Grutzeck, and M. T. Blanco, “Alkali-activated fly ashes: A cement for the future,” Cem. Concr. Res., vol. 29, no. 8, pp. 1323–1329, 1999, doi: 10.1016/S0008-8846(98)00243-9.
  • [9] V. F. F. Barbosa and K. J. D. MacKenzie, “Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate,” Mater. Res. Bull., vol. 38, no. 2, pp. 319–331, 2003, doi: 10.1016/S0025-5408(02)01022-X.
  • [10] H. Xu and J. S. J. van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, no. 3, pp. 247–266, 2000, doi: 10.1016/S0301-7516(99)00074-5.
  • [11] D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan, “On the development of fly ash-based geopolymer concrete,” ACI Mater. J., vol. 101, no. 6, pp. 467–472, 2004, [Online]. Available: https://www.researchgate.net/publication/303836414.
  • [12] N. K. Lee and H. K. Lee, “Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature,” Constr. Build. Mater., vol. 47, pp. 1201–1209, 2013, doi: 10.1016/j.conbuildmat.2013.05.107.
  • [13] X. H. Yuan, W. Chen, Z. A. Lu, and H. Chen, “Shrinkage compensation of alkali-activated slag concrete and microstructural analysis,” Constr. Build. Mater., vol. 66, pp. 422–428, 2014, doi: 10.1016/j.conbuildmat.2014.05.085.
  • [14] D. Production and N. T. Relations, “Soda ash,” no. May 2008, pp. 2008–2009, 2012.
  • [15] P. F. G. Banfill, “The rheology of fresh cement and concrete-a review,” Proc. 11th Int. Cem. Chem. Congr., vol. 1, no. July, pp. 50–62, 2003, doi: 10.1016/0008-8846(90)90053-Z.
  • [16] M. Torres-Carrasco, C. Rodríguez-Puertas, M. Del Mar Alonso, and F. Puertas, “Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 54, no. 2, pp. 45–57, 2015, doi: 10.1016/j.bsecv.2015.03.004.
  • [17] S. J. Choi, J. Il Choi, J. K. Song, and B. Y. Lee, “Rheological and mechanical properties of fiber-reinforced alkali-activated composite,” Constr. Build. Mater., vol. 96, pp. 112–118, 2015, doi: 10.1016/j.conbuildmat.2015.07.182.
  • [18] H. Mehdizadeh and E. Najafi Kani, “Rheology and apparent activation energy of alkali activated phosphorous slag,” Constr. Build. Mater., vol. 171, pp. 197–204, 2018, doi: 10.1016/j.conbuildmat.2018.03.130.
  • [19] D. P. Bentz, C. F. Ferraris, S. Z. Jones, D. Lootens, and F. Zunino, “Limestone and silica powder replacements for cement: Early-age performance,” Cem. Concr. Compos., vol. 78, pp. 43–56, 2017, doi: 10.1016/j.cemconcomp.2017.01.001.
  • [20] K. Vance, G. Sant, and N. Neithalath, “The rheology of cementitious suspensions: A closer look at experimental parameters and property determination using common rheological models,” Cem. Concr. Compos., vol. 59, pp. 38–48, 2015, doi: 10.1016/j.cemconcomp.2015.03.001.
  • [21] S. G. Erzengin, K. Kaya, S. Perçin Özkorucuklu, V. Özdemir, and G. Yıldırım, “The properties of cement systems superplasticized with methacrylic ester-based polycarboxylates,” Constr. Build. Mater., vol. 166, pp. 96–109, 2018, doi: 10.1016/j.conbuildmat.2018.01.088.
  • [22] P. F. G. Banfill and D. C. Saunders, “On the viscometric examination of cement pastes,” Cem. Concr. Res., vol. 11, no. 3, pp. 363–370, 1981, doi: https://doi.org/10.1016/0008-8846(81)90108-3.
  • [23] P. Nath and P. Sarker, “Effect of fly ash on the durability properties of high strength concrete,” Procedia Eng., vol. 14, pp. 1149–1156, 2011, doi: https://doi.org/10.1016/j.proeng.2011.07.144.
  • [24] M. M. Alonso, S. Gismera, M. T. Blanco, M. Lanzón, and F. Puertas, “Alkali-activated mortars: Workability and rheological behaviour,” Constr. Build. Mater., vol. 145, pp. 576–587, 2017, doi: 10.1016/j.conbuildmat.2017.04.020.
  • [25] J. Golaszewski, G. Cygan, M. Drewniok, and A. Kilijanek, “Rheological Properties of Scc in terms of its Thixotropic Behavıour and its Influence on Formwork Pressure,” Int. J. Res. Eng. Technol., vol. 3, no. 13, 2014.
  • [26] O. H. Wallevik and J. E. Wallevik, “Rheology as a tool in concrete science: The use of rheographs and workability boxes,” Cem. Concr. Res., vol. 41, no. 12, pp. 1279–1288, 2011, doi: 10.1016/j.cemconres.2011.01.009.
  • [27] B. Hasanzadeh, “Testing and modeling of the thixotropic behavior of cementitious materials,” University of Louisville, 2017.
Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi-Cover
  • ISSN: 1309-8640
  • Başlangıç: 2009
  • Yayıncı: DÜ Mühendislik Fakültesi / Dicle Üniversitesi