Farklı Nüve Malzemelerinin Transformatörün Verimi Üzerindeki Etkilerinin Analizi

Transformatörler elektrik iletim ve dağıtım şebekesinin en önemli bileşenleri arasındadır. Transformatörlerin yüksek verimlilikle çalışması güç sistemlerinin de verimlilikle çalışması anlamına gelmektedir. Güç sistemlerindeki teknolojik ilerlemeler, transformatör tasarımcılarına da hem daha ekonomik hem de daha verimli transformatörler üretme yönünde sorumluluk yüklemektedir. Transformatör, çekirdek, sargılar, izolasyon ve diğer birçok ekipman gibi çok sayıda modülden oluşan karmaşık üç boyutlu bir yapıdır. Transformatörün nüvesinde kullanılan farklı manyetik malzeme türleri bulunmaktadır. Ancak amorf manyetik malzemeler ve bu malzemelerle tasarlanan transformatörler ilgi odağı olmaya başlamıştır. Bu çalışmada çekirdek tipi transformatörün Sonlu Eleman modeli, aynı boyutlara ve çalışma koşullarına sahip transformatörün kayıplarını bulmak için nüvesi farklı manyetik malzemelerle tasarlanan transformatörün SEY tabanlı ANSYS-Maxwell yazılımı kullanılarak analizi gerçekleştirilmiştir. Analizler, farklı nüve malzemeleri için manyetik akı yoğunluğu, akım yoğunluğu, nüve kayıpları, girdap akım kayıpları ve manyetik vektör potansiyeli gibi farklı elektromanyetik özelliklerin karşılaştırılması için yapılmıştır.

Analysis of the Effects of Different Core Materials on Transformer Efficiency

Transformers are among the most important components of the electricity transmission and distribution network. The high efficiency of transformers means that power systems work efficiently. Technological advances in power systems impose responsibility on transformer designers to produce both more economical and more efficient transformers. It is a complex three-dimensional structure consisting of a large number of modules such as transformer, core, windings, isolation, and many other equipments. There are different types of magnetic materials used in the core of the transformer. However, amorphous magnetic materials and transformers designed with these materials have started to be the center of attention. In this study, the Finite Element model of the core-type transformer was analyzed by using FEM-based ANSYS-Maxwell software of the transformer whose core was designed with different magnetic materials to find the losses of the transformer with the same dimensions and operating conditions. Analyzes were made to compare different electromagnetic properties such as magnetic flux density, current density, core losses, eddy current losses, and magnetic vector potential for different core materials.

___

  • T. Zupan, B. Trkulja, R. Obrist, T. Franz, B. Cranganu-Cretu, and J. Smajic. ‘‘Transformer windings rlc parameters calculation and lightning impulse voltage distribution simulation’’, IEEE Transactions on Magnetics, vol.52, no.3, pp.1-4, March 2016.
  • T. Zheng, Y.J. Zhao, J. Ying, P.L. Chen, F.F. Zhang “Design and analysis on the turn-to-turn fault protection scheme for the control winding of a magnetically controlled shunt reactor”, IEEE Transactions, vol. 30, no.2, pp. 967-975, 2015.
  • M. Yazdani-Asrami, M. Mirzaie, A.S. Akmal, No-load loss calculation of distribution transformers supplied by nonsinusoidal voltage using three-dimensional finite element analysis, Energy, vol. 50, no. 1, pp. 205-219, 2013.
  • M. Ostrenko and B. Andriienko, "Transformer impulse surges calculation by FEM coupled to circuit," in IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017, Art no. 7401804.
  • T. Zheng, Y.J. Zhao, J. Ying, P.L. Chen, F.F. Zhang, “Design and analysis on the turn-to-turn fault protection scheme for the control winding of a magnetically controlled shunt reactor”, IEEE Transactions, vol. 30, no.2, pp.967-975, 2015.
  • B. Qi, X. Zhao, C. Li, H. Wu, Transient electric field characteristics in oil-pressboard composite insulation under voltage polarity reversal. IEEE Trans. Dielectr. Electr. Insul., vol. 22, pp. 2148–2155, 2015.
  • Y. Özüpak, M. S. Mamıs, Realization of electromagnetic flux and thermal analyses of transformers by finite element method. IEEJ Transactions on Electrical and Electronic Engineering, vol.14, no.10, pp. 1478-1484. Doi: 10.1002/tee.22966, 2019.
  • Y. Özüpak, M. S. Mamıs, İ. H. Teke, ‘‘Electromagnetic Field and Total Loss Analysis of Transformers by Finite Element Method.’’ International Journal of Engineering And Computer Science, vol.8, no.1, pp. 24451-24460. Yayın No: 5774086, 2019.
  • P. Huang, C. Mao, D. Wang, ‘‘Electric Field Simulations and Analysis for High Voltage High Power Medium Frequency Transformer’’ Energies, vol.10, no.3, pp.371, doi:10.3390/en10030371, 2017.
  • M. Ostrenko, B. Andriienko, "Transformer impulse surges calculation by FEM coupled to circuit," in IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017. Art no. 7401804.
  • K. Sarpreet, K. Damanjeet, Analysis of effect of core material on the performance of single phase transformer using FEM, IOP Conf. Series: Materials Science and Engineering 561, 012129, 2019. doi:10.1088/1757-899X/561/1/012129
  • A. Lotfi, M. Faridi, 2012. Design optimization of gapped-core shunt reactor”. IEEE, vol. 48, no.4, pp.1673-1676
  • P. Beckley, Electrical steels for rotating machines, No. 37, IET, 2002.
  • M. Zare, S.M.P. Razi, H.F. Farahani and A. Khodakarami, Finite Element Analysis of Leakage Inductance of 3-Phase Shell-Type and Core Type Transformers. Research Journal of Applied Sciences, Engineering and Technology, vol. 4, no. 12, pp.1721-1728. 2012.