Experimental Modeling of Dry Friction Coefficient between Steel and Aluminum Alloy in the Condition of Severe Plastic Deformation

Bu çalışma ile, yüksek temas basınçları ve düşük hız koşullarında çelik alüminyum alaşım sistemi için sürtünme katsayısı değerleri elde edilmiştir. Bu amaca yönelik olarak, daha önce literatürde sunulan sürtünme test cihazlarının yeni bir düzenlemesi yapılmış, yüzey pürüzlülüğünün ve uygulanan normal yükün sürtünme katsayısı üzerindeki etkileri araştırılmıştır. Sonuçlar açıkça göstermektedir ki, sürtünme katsayısı, uygulanan normal yükten oldukça etkilenmekte ve yük arttıkça azalmaktadır. Ayrıca, yüzey pürüzlülüğü sürtünme katsayısını da etkilemektedir. Ancak etkisi, uygulanan normal yük kadar önemli değildir. Son olarak literatürde önerilen teorik sürtünme modelleri, bu çalışmanın deneysel modeli ile karşılaştırılmıştır

Experimental Modeling of Dry Friction Coefficient between Steel and Aluminum Alloy in the Condition of Severe Plastic Deformation

Through with current study the friction coefficient values for steel-aluminum alloy system in high contact pressures and low speed conditions have been obtained. To aim this goal a new arrangement of friction test apparatus which already was offered in literature has been fabricated. Towards, the effects of surface roughness and applied normal load on friction coefficient have been investigated. The results clearly revealed that friction coefficient is significantly influenced by applied normal load and reduces with increasing in load. Furthermore, surface roughness influences friction coefficient; but its effect is not as important as applied normal load. Finally, the suggested theoretical friction models in literature are compared with an experimental model of this study

___

  • 1. Ulutan, M., et al., (2010). Effect of Different Surface Treatment Methods on the Friction and Wear Behavior of AISI 4140 Steel. 26(3), 251-257.
  • 2. K.M. Adel, A.S. Dhia, and M.J. Ghazali, (2009). the effect of laser surface hardening on the wear and friction characteristics of acicular bainitic ductile iron. 4(2), 5.
  • 3. Johnson, K. and R. Cameron, (1967). Fourth paper: shear behaviour of elastohydrodynamic oil films at high rolling contact pressures. 182(1), 307-330.
  • 4. Patil, B., U. Chakkingal, and P. Kumar, (2008). influence of friction in equal channel angular pressing – a study with simulation. 5(13-15.
  • 5. Eskandarzade, M., Masoumi, A., Faraji, Gh., Mohammadpour, M., Sabrina Yan, X, (2017). A new designed incremental high pressure torsion process for producing long nanostructured rod samples. 695, 1539- 1546.
  • 6. Eskandarzade, M., Masoumi, A., Faraji,. Gh. (2017) Numrical and analytical investigation of an ultrasonic assisted ECAP process. 2(2), 166-183.
  • 7. Mehdi Eskandarzade, A.M., Ghader Faraji, (2016). Numerical and analytical investigation of an ultrasonic assisted ECAP process. 2(2), 18.
  • 8. Lai, X., et al., (2012). An experimental method for characterizing friction properties of sheet metal under high contact pressure. 289(0), 82-94.
  • 9. Pougis, A., et al., (2013). Dry friction of steel under high pressure in quasi-static conditions. 67(0), 27-35.
  • 10. Spijker, P., G. Anciaux, and J.-F. Molinari, (2011). Dry sliding contact between rough surfaces at the atomistic scale. 44(2), 279-285.
  • 11. Greenwood, J. and J. Tripp, (1970). The contact of two nominally flat rough surfaces. 185(1), 625-633.
  • 12. Greenwood, J.A. and J.H. Tripp, (1967). The elastic contact of rough spheres. 34(1), 153-159.
  • 13. Dwyer-Joyce, R., B. Drinkwater, and A. Quinn, (2001). The use of ultrasound in the investigation of rough surface interfaces. 123(1), 8-16.
  • 14. Cohen, D., Y. Kligerman, and I. Etsion, (2008). A model for contact and static friction of nominally flat rough surfaces under full stick contact condition. 130(3), 031401.
  • 15. Eguchi, M., T. Shibamiya, and T. Yamamoto, (2009). Measurement of real contact area and analysis of stick/slip region. 42(11), 1781-1791.
  • 16. Buchner, B., M. Buchner, and B. Buchmayr, (2009). Determination of the real contact area for numerical simulation. 42(6), 897-901.
  • 17. Li, L., I. Etsion, and F. Talke, (2010). Contact area and static friction of rough surfaces with high plasticity index. 132(3), 031401.
  • 18. Pal, A.K., (1973). A study of metallic friction phenomena with high normal pressure. 26(2), 261-272.
  • 19. Kim, H. and N. Kardes, (2012). Friction and lubrication.