The effects of enalapril maleate and cold stress on some blood parameters

Enalapril, ACE (Angiotensin Converting Enzyme) inhibitörleri kategorisine ait olup, anjiyotensin dönüştürücü enzimin kompetetif inhibitörüdür. ACE inhibitörlerinin faydalı etkileri, öncelikle plazma renin-anjiyotensin-aldesteron sisteminin baskılanmasıyla ortaya çıkar. Enalapril maleat'ın farmakolojik aksiyonları, hipotansiyonla ilişkilidir. Enalapril maleat, kan damarlarını gevşeterek, yüksek kan basıncını kontrol eden bir ACE inhibitörüdür. Stres, organizmanın değişen çevreye uyumunu sağlayan önemli cevapları tetikler. Katekolaminlerin salınması, stres vericilere cevapta anahtar bir olaydır ve katekolamin sentez enzimlerini kodlayan genlerin ifadesinde artış ile takip edilir. Bu çalışma, sıçan kanında glukoz, trigliserit, kolesterol ve albumin seviyeleri üzerine enalapril maleat ve soğuk stresin etkilerini ortaya çıkarmak için düzenlenmiştir. Soğuk stres uygulama grubunda kan glukoz, kolesterol ve trigliserit seviyesi artıp, albumin seviyesi azalmıştır (P

Bazı kan parametreleri üzerine soğuk stresi ve enalapril maleate'in etkileri

Enalapril is a highly specific, competitive inhibitor of angiotensin converting enzyme (ACE) belonging to the category of ACE inhibitors. The beneficial effects of ACE inhibitors appear to result primarily the suppression of the plasma renin-angiotensin-aldesteron system. The pharmacological actions of enalapril maleate are related to hypotension. Enalapril maleate is an ACE inhibitor that controls high blood pressure by relaxing blood vessels. Stress triggers important adaptive responses that enable an organism to cope with a changing environment. The release of catecholamine is a key initial event in responses to stressors and is followed by an increase in the expression of genes that encode catecholamine-synthesizing enzymes. This study is designed to detect the effects of enalapril maleate and cold stress on blood glucose, triglyceride, cholesterol, and albumin levels in rat sera. Cold stress treatment has increased blood glucose, cholesterol and triglyceride levels but albumin level has decreased (P<0.05). Enalapril maleate treatment has decreased blood glucose and triglyceride levels (P<0.05). Cholesterol and albumin levels have not changed (P>0,05). Cold stress+enalapril maleate treatment has decreased blood glucose level (P<0.05). Triglyceride, cholesterol and albumin levels have not changed (P>0,05).

___

  • 1. Blumenthal JA, Emery CF, Madden DJ, et al. Cardiyovascular and behavioral effects of aerobic exercise training in healthy older men and women. J. Geron,1989; 44:147-157.
  • 2. Yürekli M. The Effects of Phenoxybenzamine of Tyrozine Hydroxylase (TH) and TH mRNA Level in Adrenal Medulla of Sprague Dawley Rats. Tr. J. of Med. Sci, 1998; 28: 35-40.
  • 3. Reynolds JEF, Martindale. The Extra Pharmacopoeia. Thirty first Edition. The Royal Pharmaceutical Society, London Royal, 1996.
  • 4. Miner LL, Baruchin A and Kaplan BB. Effect of Cold Stress on cholinergic receptors in the rat adrenal gland. Neuroscience Letters, 1989; 106:339-344.
  • 5. Fregly MJ, Rossi F, Sun Z, et al. Effect of Chronic Treatment with Prazosin and LArjinine on the Elevation of Blood Pressure during Cold Exposure. Pharmacology, 1994; 49:351-362.
  • 6. Noyan A. Fiztoloji Ders Kitabı. Sekizinci Baskı. Anadolu Üniversitesi Yayınları No: 2 Meteksan Ankara, 1993.
  • 7. Roberts J, Tumer N. Age related changes in autonomic function of catecholamines. Rewiew of Biological in Aging, 1987; 3:27-298.
  • 8. Klinik Biyokimya I Ders Notları, Çukurova Üniversitesi Tıp Fakültesi Yayınları, No:6 Klinik Biyokimya Anabilim Dalı, Adana 1997.
  • 9. Vietor I, Rusnak M, Viskupik E, et al. Glucoprivation by insulin leads to transsynaptic increase in rat adrenal tyrosine hydroxylase mRNA levels. Eur J Pharmacol, 1996; 313:119-27.
  • 10. Kunihara M, Oshima T. Effects of epinephrine on plasma cholesterol levels in rats. J Lipid Res, 1983; 24: 639-44.
  • 11. Korner PI. Circulatory control and the supercontrollers. Journal of Hypertension, 1995; 13: 1508-1521.
  • 12. Thomas GN, Tomlinson B, Chan JC, at al. Renin-angiotensin system gene polymorphisms, blood pressure, dyslipidemia, and diabetes in Hong Kong Chinese. Diabetes Care, 2001; 24: 356-61.
  • 13. Swales JD, Dzau VJ. ACE inhibition: research advances and clinical implications. Am Heart J, 1992; 123:1412-1414.
  • 14. Pitt B, Segal R, Martinez FA, et al. On behalf of ELITE Study Investigators: Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan In The Elderly Study, ELITE). Lancet, 1997; 349:747-752.
  • 15. Ferrannini E, Seghieri G, Muscelli E. Insulin and the renin-angiotensin-aldosterone system: influence of ACE inhibition. J Cardiovasc Pharmacol, 1994; 24: S61-S69.
  • 16. Ambrosioni E, Bacchelli S, Degli ED, Borghi C. ACE-inhibitors and atherosclerosis. Eur J Epidemiol, 1992; 8:129-133.
  • 17. Uehara M, Kishikawa H, Isami S, et al. Effect on insulin sensitivity of angiotensin converting enyme inhibitors with or without a sulphydryl group: bradykinin may improve insulin resistance in dogs and humans. Diabetologia, 1994; 37:300-307.
  • 18. Henriksen EJ, JacobS, Kinnick TR, et al. ACE inhibition and glucose transport in insulin resistant muscle: roles of bradykinin and nitric oxide. Am J Physiol, 1999; 277:R332-R336.
  • 19. Young RP, Chan JCN, Critchley JAJH, et al. Angiotensinogen T235 and ACE insertion/deletion polymorphism associated with albuminuria in Chinese type 2 diabetic patients. Diabetes Care, 1998; 21:431-437.
  • 20. Townsend RR, DiPette D. Pressor doses of angiotensin II increase insulinmediated glucose uptake in normotensive men. Am J Physiol, 1993; 265:E362-E366.
  • 21. Buchanan TA, Thawani H, Kades W, et al. Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism. J Clin Invest, 1993; 92:720-726.
  • 22. Morris AD, Donnelly R. Angiotensin II: an insulin-sensitizing vasoactive hormone? J Clin Endocrinol Metab, 1996; 81:1303-1306.
  • 23. Hennes MMI, O'Shaughnessy IM, Kelly TM, et al. Insulin-resistant lipoloysis in abdominally obese hypertensive individuals: role of the renin-angiotensin system. Hypertension, 1996; 28: 120-126.
  • 24. Ellis GR, Nightingale AK, Blackman DJ, et al. Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. European Journal of Heart Failure, 2002; 4: 193-199.
  • 25. Scribner AW, Loscalzo J, Napoli C. The effect of angiotensin-converting enzyme inhibition on endothelial function and oxidant stres. European Journal of Pharmacology, 2003; 482: 95-99.
  • 26. Prisco D, Paniccia R, Bandinelli B, et al. Short-term ACE inhibition may influence exercise-induced changes in haemostasis in healthy subjects. Fibrinolysis & Proteolysis, 1997; 11:187-192.
  • 27. Chiarelli F, de Martino M, Mezzetti A, et al. Advanced glycation end products in children and adolescents with diabetes: relation to glycemic control and early microvascular complications. J Pediatr, 1999;134:486-491.
  • 28. Chiarelli F, Verrotti A, Mohn A, Morgese G. The importance of microalbuminuria as an indicator of incipient diabetic nephropathy: therapeutic implications. Ann Med, 1997;29:439-445.
  • 29. Gorski J, Gorska M, Hryniewicz A. Effect of cold exposure on the concentration of triglyceride in the liver of the rat. Acta Physiol Pol, 1988; 39: 136-42.
  • 30. Meeking DR, Cummings MH, Thorne S. Endothelial dysfunction in Type 1 diabetic subjects with and without microalbuminuria. Diabetic Medicine, 1999; 16:841.
  • 31. Kodama K, Adachi H and Sonoda J. Beneficial Effects of Long-term Enalapril Treatment and Low-Salt Intake on Survival Rate of Dahl Salt-Sensitive Rats with Established Hypertension. Pharmacology, 1997; 283: 625-629.