INH Direnç Mekanizmaları

Her ne kadar izoniazid (INH) 'ın Mycobacterium tuberculosis üzerindeki etki mekanizması tam anlaşılamamış olsa da öncü ilaç olan INH sitoplazmaya pasif difüzyon ile girmektedir. KatG geni tarafından kodlanan katalaz/peroksidaz enzimi ile aktiflenmektedir. INH 'ın aktiflenmesi ile serbest metabolik radikaller oluşmakta, bunlar da mikolik asit sentezi gibi pek çok hücresel fonksiyonu bozmaktadırlar. KatG mutasyonları INH direncinin ana sebebidir. INH 'a dirençli klinik izolatların % 50 'den fazlasında katG 315. pozisyonda serin yerine treonin 'in değiştiği bir mutasyon vardır. İnhA, ndh ve pompa genleri gibi genler de INH direncine katkıda bulunabilirler. Bu derleme yazısı Mycobacterium tuberculosis 'de INH etki mekanizmasını ve ilaç direncinin moleküler temellerini özetlemektedir.

INH Resistance Mechanisms

Although the precise mechanism of isoniazid (INH) action on Mycobacterium tuberculosis remains poorly understood, the pro-drug INH enters the cytoplasm through simple passive diffusion. It activated by the enzyme catalase/peroxidase encoded by KatG gene. Activation of INH results in the formation of various potent free radical species that are capable of disabling many cellular processes such as mycolic acid synthesis. Mutations in katG are the major mechanism of INH resistance. More than 50% of isoniazid-resistant clinical isolates contain a mutation in KatG wherein the serine at position 315 is substituted with threonine. Several other genes such as inhA, ndh, and efflux pump genes may contribute to INH resistance. This review article discusses the mechanisms of action of INH and the molecular basis of drug resistance in M. tuberculosis.

___

  • 1. Unissa AN, Subbian S, Hanna LE, Selvakumar N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect Genet Evol. 2016; 45:474-92.
  • 2. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 1998; 79:3- 29.
  • 3. Heym B, Saint-Joanis B, Cole ST. The molecular basis of isoniazid resistance in Mycobacterium tuberculosis. Tuber Lung Dis. 1999; 79:267-71.
  • 4. Nasiri MJ, Haeili M, Ghazi M, et al. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol. 2017; 8:681.
  • 5. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis. 2015; 19:1276-89.
  • 6. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Mol Microbiol. 2006; 62:1220-7.
  • 7. Musser JM. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev. 1995; 8:496-514.
  • 8. Cohn ML, Kovitz C, Oda U, Middlebrook G. Studies on isoniazid and tubercle bacilli. II. The growth requirements, catalase activities, and pathogenic properties of isoniazid-resistant mutants. Am Rev Tuberc. 1954; 70:641-64.
  • 9. Almeida Da Silva PE, Palomino JC. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother. 2011; 66:1417-30.
  • 10. Cade CE, Dlouhy AC, Medzihradszky KF, et al. Isoniazid-resistance conferring mutations in Mycobacterium tuberculosis KatG: catalase, peroxidase, and INH-NADH adduct formation activities. Protein Sci. 2010; 19:458-74.
  • 11. Rahim Z, Nakajima C, Raqib R, Zaman K, Endtz HP, van der Zanden AG, Suzuki Y. Molecular mechanism of rifampicin and isoniazid resistance in Mycobacterium tuberculosis from Bangladesh. Tuberculosis (Edinb). 2012; 92:529-34.
  • 12. Aslan G, Tezcan S, Serin MS, Emekdas G. Genotypic analysis of isoniazid and rifampin resistance in drugresistant clinical Mycobacterium tuberculosis complex isolates in southern Turkey. Jpn J Infect Dis. 2008; 61:255-60.
  • 13. Barry CE 3rd, Slayden RA, Mdluli K. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis. Drug Resist Updat. 1998;1: 128-34.
  • 14. Slayden RA, Barry CE 3rd. The genetics and biochemistry of isoniazid resistance in mycobacterium tuberculosis. Microbes Infect. 2000;2: 659-69 .
  • 15. Pinheiro M, Silva AS, Pisco S, Reis S. Interactions of isoniazid with membrane models: implications for drug mechanism of action. Chem Phys Lipids. 2014;183:184- 90.
  • 16. Wayne LG, Hayes LG. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996; 64:2062-9.
  • 17. Betts JC, Lukey PT, Robb LC, et al. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol. 2002; 43:717-31.
  • 18. Voskuil MI, Schnappinger D, Visconti KC, et al. Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med. 2003; 198:705-13.
  • 19. Lavollay M, Arthur M, Fourgeaud M, et al. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by L,D-transpeptidation. J Bacteriol. 2008; 190:4360-6.
  • 20. Ramos RM, Perez JM, Baptista LA, de Amorim HL. Interaction of wild type, G68R and L125M isoforms of the arylamine-N-acetyltransferase from Mycobacterium tuberculosis with isoniazid: a computational study on a new possible mechanism ofresistance. J Mol Model. 2012;18:4013-24.
  • 21. Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China. J Clin Microbiol. 2005; 43:5477-82.
  • 22. Nandakumar M, Nathan C, Rhee KY. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat Commun. 2014; 5:4306
Dicle Tıp Dergisi-Cover
  • ISSN: 1300-2945
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1963
  • Yayıncı: Cahfer GÜLOĞLU
Sayıdaki Diğer Makaleler

İleri Yaş Hastalarda Çimentolu ve Çimentosuz Hemiartroplasti Sonuçlarının Karşılaştırılması

Şehmuz KAYA, Hüseyin ÖZDEMİR, Abdullah Yalçın DABAK

Quality of Life and Self-Efficacy of Adolescents with Chronic Health Conditions

Demet TAŞ, EBRU ÖZTÜRK ÇOPUR, HANDE KONŞUK ÜNLÜ, ZEYNEP TÜZÜN, LÜTFİYE HİLAL ÖZCEBE

Effect of clinical autonomic dysfunction on cognitive functions in Parkinson's disease

DURSUN AYGÜN, Çetin Kürşad AKPINAR, Serpil YON, Musa Kazım ONAR

Son Bir Yıl İçindeki Nekrotizan Fasiitis Tanısı Alan Hastaların Değerlendirilmesi

İBRAHİM TAYFUN ŞAHİNER, MURAT KENDİRCİ, Mete DOLAPÇI

Multiple Skleroz'lu Hastalarda Üst Ekstremite Ataksisinin Bilgisayar Analizi İle Değerlendirilmesi

FATMA ERDEO, KADRİYE ARMUTLU, ALİ ULVİ UCA, İBRAHİM YILDIZ

Acute Abdomen Caused by Spontaneous Perforation of Hydatid Liver Cyst

Faik TATLI, Orhan GÖZENELİ, Yusuf YÜCEL, ALİ UZUNKÖY, Hüseyin Cahit YALÇIN, Yalçın OZGÖNÜL, Abuzer DİRİCAN

Trombositten zengin Fibrinin periferik sinir iyileşmesi üzerindeki histopatolojik etkileri

Hasan METİNEREN, Turan Cihan DÜLGEROĞLU, Mehmet Hüseyin METİNEREN

INH Direnç Mekanizmaları

Tanseli GÖNLÜGÜR, UĞUR GÖNLÜGÜR

A newborn with moderate hemophilia A with severe intracranial and extracranial hemorrhage: A case report

ŞEBNEM KADER, Pınar Gökçe REİS, MEHMET MUTLU, Yakup ASLAN, EROL ERDURAN, UĞUR YAZAR

Seroprevalences of Hepatitis B and Hepatitis C among healthcare workers in Tire State Hospital

Gökçen BUDAK GÜRKÖK, Nalan GÜLENÇ, Elife ÖZKAN, Rıfat BÜLBÜL, Caner BARAN