Yüksek Hızlı Trenlerde Aerodinamik Tasarımın Önemi ve Uluslararası Standartlarda Yapılan Yenilikler

Bu makale, Yüksek Hızlı Trenlerin artan işletmecilik hızlarına istinaden dikkate alınması gereken aerodinamik araç tasarımı ve buna bağlı olarak değişen faktörleri incelemiştir. Ayrıca, son dönemde karşılıklı işletilebilirlik (TSI) ve CEN standartlarında belirtilen gereklilikler için yapılan iyileştirmeler ve test prosedürlerindeki gelişmeler belirtilmiştir.

The Importance of the Aerodynamic Design in High Speed Trains and the Changes Conducted in the International Standards

This paper reviews the aerodynamic vehicle design of High Speed Train and changing factors related with an increase of the operation speed. In addition, latest improvements on TSI and CEN requirements and test procedures are defined.

___

[1] J, Schetz, “Aerodynamics of High Speed Trains”. Annual Review Fluid Mechanics. no. 33, pp 371-414, (2001).

[2] R. Raghunathan, H. Kim and T. Setaguchi, “Aerodynamics of High Speed Trains'. Progress in Aerodynamic Sciences” pp 469-514, (2002).

[3] G. Gawthrope, “Aerodynamics in railway engineering, 1. Aerodynamics of trains in the open air”, Proc.World Congr. Inst. Mech. Eng. Railw. Eng. Int. pp 7-12, (1978).

[4] B. Shulte-Werning, “Research of European Railway Operators to Reduce Environmental Impact of High Speed Trains”, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, pp 249-257, (2003).

[5] T. Hong-qi, “Formation mechanism of aerodynamic drag of high-speed train and some reduction measures” 16th edition. China: J. Central South University Technology, (2009).

[6] A. Miyako and Y.Yamamoto, “Investigation of running resistance of high speed trains”, Proceedings of the World Congress on Railway Research. Florence, pp 577-579. (1997)

[7] T. Johnson and S. Dalley, “1/25 Scale Moving Model Tests for TRANSAERO Project”, third edition. Derby: RAPIDE/TRANSAERO Project, (2002).

[8] J. Xue and F. Banko, “Pioneering the Application of High Speed Rail Express Trainsets in the United States. Parsons Brinckerhoff Group Inc., p 95, (2012).

[9] Trans-Avrupa Yüksek Hızlı Demiryolu Sisteminin Karşılıklı İşletilebilirliği, “Altyapı” Alt Sistemi, (2008).

[10] D.K.L.N. Wu and P.a.P.C.W. Waterson, “Research Project T871: Guidance for Computational Fluid Dynamics Modelling of the Forces and Moments Acting on Trains in Crosswinds”, First Issue edition, RSSB, (2009).

[11] B. Diedrichs, “Unsteady aerodynamic crosswind stability of a high-speed train subjected to gusts of various rates”, Vehicle Aerodynamics. vol. 509, (2009).

[12] Trans-Avrupa Yüksek Hızlı Demiryolu Sisteminin Karşılıklı İşletilebilirliği ,“Gürültü” Alt Sistemi, (2008).

[13] M. Ikeda, “Passive lift suppression mechanism for low noise pantograph”, Quarterly Report of RTRI, vol. 41 no. 4, pp 177-181, (2000).

[14] A. Torii and J. Ito, “Development of the series 700 Shinkansen train-set (improvement of noise level)”, In Proc. World Congr. Railw. Res. Tokyo, (1999).

[15] DB Netz AG 820.2010A08, Altyapı tamimi

[16] H. Goossens, “Maintenance of High Speed Lines UIC Report 2010”, 1st phase, p 30, (2010).

[17] Trans-Avrupa Yüksek Hızlı Demiryolu Sisteminin Karşılıklı İşletilebilirliği, “Hızlı Trenler” Alt Sistemi, (2008).

[18] Tünel Simulasyon Tesisi (2013), URL: http://scart.dlr.de/site/test-facilities/tsg/index.htm#c73 (Erişim zamanı : Temmuz 23, 2019)

[19] C. Baker, T. Johnson and others, Train Aerodynamics: Fundamentals and Applications, Butterworth-Heinemann, 2019

[20] RSSB T848 Research, “AeroTRAIN-Aerodynamics: Total Regulatory for Interoperability”, (2013).