Volatile and Phenolic Compositions of the Leaves of Two Vinca L. Species from Turkey

Volatile and Phenolic Compositions of the Leaves of Two Vinca L. Species from Turkey

The genus Vinca (Apocynaceae) comprises about seven species in Turkey. In this study, volatile oil and phenolic compositions was determined in two Vinca L. species; Vinca herbacea and Vinca soneri. For determination volatile content GC-MS/MS and to reveal the phenolic composition of leaves HPLC technique was preferred. According to the analyses the major volatile component of VH extract is tetrapentacontane (77.84 %), VS extract is 6- octadecanoic acid (28.85 %). The major phenolic compound of VH extract is routine trihydrate (1280,25 mg/100g) and VS extract is chlorogenic acid (401,23 mg/100g) respectively. As a result, it has been concluded that leaf extracts contain very valuable natural compounds in terms of anticancer and antiproliferative effects.

___

  • Benavente-Garcıa, O., Castillo, J., Lorente, J., Ortuno, A., & Del Rio, J. (2000). Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry, 68(4), 457-462.
  • Brandao, E. M., Brandão, P. H., Souza, I. A., Paiva, G. S., Carvalho, M. d. C., & Lacerda, C. M. (2013). Antineoplastic effect of aqueous extract of Plectranthus amboinicus in Ehrlich ascites carcinoma. Journal of Cancer, 4(7), 573.
  • Brogan, C. (2010). Alkaloids cancer treatments. Retrieved from http://www.Vinca alkaloids\AlkaloidsCancer Treatment Livestrong_com.mh
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci, 74(17), 2157-2184. doi:10.1016/j.lfs.2003.09.047
  • Cheynier, V. (2012). Phenolic compounds: from plants to foods. Phytochemistry Reviews, 11(2-3), 153-177.
  • Guo, X., He, D., Yang, L., Li, Y., Chen, Q., Chen, J., Zhang, E., Lin, X., He, J., Yang, Y., Han, X., Zheng, G., Wu, W., Zhao, Y., Huang, H., & Cai, Z. (2015). Quercetin Displays Anti-Myeloma Activity and Synergistic Effect with Dexamethasone in Vitro and In Vivo Xenograft Models. Blood, 126(23), 5339.
  • Güner, A. (2012). Türkiye bitkileri listesi:(damarlı bitkiler): ANG Vakfı.
  • Han, X., Shen, T., & Lou, H. (2007). Dietary polyphenols and their biological significance. International Journal of Molecular Sciences, 8(9), 950-988.
  • He, D., Guo, X., Zhang, E., Zi, F., Chen, J., Chen, Q., . . . Wu, W. (2016). Quercetin induces cell apoptosis of myeloma and displays a synergistic effect with dexamethasone in vitro and in vivo xenograft models. Oncotarget, 7(29), 45489.
  • Koyuncu, M. (2012). A new species of Vinca (Apocynaceae) from eastern Anatolia, Turkey. Turkish journal of botany, 36(3), 247-251.
  • Koyuncu, M., Ekşi, G., & Özkan, A. M. G. (2015). Vinca ispartensis (Apocynaceae), a new species from Turkey. Annales Botanici Fennici, (52, 5-6). BioOne.
  • Ma, Y., Jin, Z., Huang, J., Zhou, S., Ye, H., Jiang, S., & Yu, K. (2014). Quercetin suppresses the proliferation of multiple myeloma cells by down-regulating IQ motif-containing GTPase activating protein 1 expression and extracellular signal-regulated kinase activation. Leukemia & lymphoma, 55(11), 2597-2604.
  • Mah, S. H., Teh, S. S., & Ee, G. C. L. (2017). Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia. Pharmaceutical biology, 55(1), 920-928.
  • Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews, 52(4), 673-751.
  • Nishibe, S., Takako, T., Takahiko, F., Yasukawa, K., Takido, M., Yasujiro, M. Akira, H. ( 1996). Bioactive Phenolic Compounds from Catharanthus roseus and Vinca minor. . Nat. med., 50:, 378-383.
  • Proestos, C., Chorianopoulos, N., Nychas, G.-J., & Komaitis, M. (2005). RP-HPLC analysis of the phenolic compounds of plant extracts. Investigation of their antioxidant capacity and antimicrobial activity. Journal of agricultural and food chemistry, 53(4), 1190-1195.
  • Puupponen‐Pimiä, R., Nohynek, L., Meier, C., Kähkönen, M., Heinonen, M., Hopia, A., & Oksman‐Caldentey, K. M. (2001). Antimicrobial properties of phenolic compounds from berries. Journal of applied microbiology, 90(4), 494-507.
  • Qıan, Y., Zhang, L., Chen, Q.-s., Zhang, Y., Xıao, D., Wen, X.-q., & Zhao, W.-l. (2012). Catechins induce apoptosis of multiple myeloma RPMI 8226 cells and its mechanism. Tumor, 32(1), 1-6.
  • Ramalakshmi, S., & Muthuchelian, K. (2011). Analysis of bioactive constituents from the leaves of Mallotus tetracoccus (roxb.) Kurz, by gas chromatography-mass spectrometry. International Journal of Pharmaceutical Sciences And Research, 2(6), 1449.
  • Sahelian, R. (2011). Alkaloid substances in plants, information on vinca, ergot and ephedra alkaloid compounds. Retrieved from http://www.raysahelian.com/alkaloid.html
  • Saral, Ö., Şahin, H., & Karaköse, M. (2015). Vinca major subsp. hirsuta’nın antioksidan aktivitesinin ve RP-HPLC-UV ile fenolik bileşenlerinin belirlenmesi. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 16(2). doi:10.17474/acuofd.59141
  • Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem, 53(20), 7749-7759. doi:10.1021/jf051513y
  • Stearn, W. (1978). Vinca L. . In D. PH (Ed.), Flora of Turkey and the East Aegean Islands (Vol. 6, pp. 161-163). Edinburgh: Edinburgh University Press.
  • Stearn, W. T. (1973). Synopsis of the genus Vinca including its taxonomic and nomenclatural history. In W. Taylor & N. Farnsworth (Eds.), The Vinca alkaloids; botany, chemistry, pharmacology (pp. 19-94).
  • Swamy, M. K., Arumugam, G., Kaur, R., Ghasemzadeh, A., Yusoff, M. M., & Sinniah, U. R. (2017). GC-MS Based Metabolite Profiling, Antioxidant and Antimicrobial Properties of Different Solvent Extracts of Malaysian Plectranthus amboinicus Leaves. Evidence-Based Complementary and Alternative Medicine, 2017.
  • Verma, S., Singh, A., & Mishra, A. (2013). Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol, 35(3), 473-485. doi:10.1016/j.etap.2013.02.011
  • Yulianto, W., Andarwulan, N., Giriwono, P. E., & Pamungkas, J. (2016). HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7Cells. Journal of Chromatography B, 1039, 28-34.