The Potential of Marine Resources in Cosmetics

The Potential of Marine Resources in Cosmetics

The Ocean is a continuous body of saltwater that covers more than 70 percent of the Earth's surface. Despite the fact that oceanic habitats exhibit chemical and physical properties that make certain ocean zones suitable or unsuitable places for different species to live, the chemical (salinity and dissolved gases) and physical (temperature, density, buoyancy, waves, tides, and currents) properties of ocean water are delicately intermingled which produce one of the most self-sustaining life support systems on earth. This unique characteristic has made the marine environment an untapped source of bioactive natural products with unique structural and chemical features. Although many marine-derived compounds have been explored for their potential in pharmaceutical industry and some of which are already on the market, these molecules are still underexplored for natural cosmetics when compared to plant-derived compounds. However, recently many cosmetic firms have turned their attention to the sea to obtain several kinds of marine-derived compounds for cosmetic ingredients such as moisturizer, anti-ageing, photoprotection and skin whitening agents. With more research on the small molecules, biopolymers and enzymes from the marine environment, it is expected that the era of “blue cosmetics” will be dominating this sector very soon.

___

  • Bhattar, P. A., Zawar, V. P., Godse, K. V., Patil, S. P., Nadkarni, N. J., Gautam. M. M. 2015. Exogenous ochronosis. Indian Journal of Dermatology, 60(6):537-543.
  • Bownik, A. and Stępniewska, Z. 2016. Ectoine as a promising protective agent in humans and animals. Archives of industrial hygiene and toxicology, 67:260-265.
  • Brunt, E. G. and Burgess, J. G. 2018. The promise of marine molecules as cosmetic active ingredients. International Journal of Cosmetic Science, 40: 1-15.
  • Chattopadhyay, S. and Raines, R. T. Collagen-Based Biomaterials for Wound Healing. Biopolymers, 101(8): 821-833.
  • Grune, T., Lietz, G., Palou, A., Ross A. C., Stahl, W. Tang, G., Thurnham, D., Yin, S., Hans Biesalski. 2010. K. β-carotene is an important vitamin A source for humans. The Journal of Nutrition, 140(12): 2268S-2285S.
  • Guillerme, J. B., Couteau, C., Coiffard, L. 2017. Applications for marine resources in cosmetics. Cosmetics, 4(3), 35; doi:10.3390/cosmetics4030035.
  • Juliano, C. and Magrini, G. A. 2018. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products. Cosmetics, 2018, 5 (1), 19; https://doi.org/10.3390/cosmetics5010019.
  • Joe, M. J., Kim, S. N., Choi, H. Y., Shin, W. S., Park, G. M., Kang, D. W., Kim, Y. K. 2006. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biological and Pharmaceutical Bulletin, 29(8):1735-1739.
  • Karentz, D.; McCuen, F.S.; Land, M.C.; Dunlap, W.C. 1991. Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure. Marine Biology, 1991, 108:157-166.
  • Kijjoa, A. and Sawangwong, P. 2004. Drugs and Cosmetics from the Sea. Marine Drugs, 2 (2): 73-82.
  • Lawrence, K.P., Gacesa, R., Long, P.F., Young, A. R. 2018. Molecular photoprotection of human keratinocytes in vitro by the naturally occurring mycosporine-like amino acid palythine. British Journal of Dermatology, 178:1353–1363.
  • Le Costaouec, T, Cérantola, S., Ropartz, D., Sinquin, C., Colliec-Jouault, S., Boisset, C. 2012. Structural data on a bacterial exoplysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohydrate Polymers, 90:49-59.
  • Llewellyn, C. A. and Airs, R. L. 2010. Distribution and Abundance of MAAs in 33 species of microalgae across 13 classes. Marine Drugs, 8, 1273-1291; doi:10.3390/md804127.
  • Makrantonaki, E., Zouboulis, C. C. 2007. Molecular mechanisms of skin aging: state of the art. Annals of the New York Academy of Sciences, 1119:40-50.
  • Mann, T., Gerwat, W., Batzer, J., Eggers, K., Scherner, C., Wenck, H., Stäb, F., Hearing, V. J., Röhm, K. H., Kolbe, L. 2018. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. Journal of Investigative Dermatology, 138:1601-1608.
  • Makrantonaki, E., Bekou, V., C. C. Genetics and skin aging. Dermatoendocrinoly, 2012 4(3): 280-284. doi:10.4161/derm.22372.
  • Mourelle, M. L., Carmen P. Gómez, C. P., Legido, J. L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics, 2017, 4 (4): 46; doi:10.3390/cosmetics4040046.
  • Pandika, M. 2018. Looking to nature for new sunscreens. ACS Central Science, 4 (7), 788–790.
  • Purnamawati, S., Indrastuti, N., Danarti, R., Saefudin, T. 2017. The Role of Moisturizers in Addressing Various Kinds of Dermatitis: A Review. Clinical Medicine and Research, 15(3-4): 75-87.
  • Raja, R., Hemaiswarya, S., Rengasamy, R. 2007. Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74:517-523.
  • Shen, C. T., Chen, P. Y., Wu, J. J., Lee, T. M., Hsu, S. L., Chang, C. M., Young, C. C., Shieh, C. J. 2011. Purification of algal anti-tyrosinase zeaxanthin from Nannochloropsis oculata using supercritical anti-solvent precipitation. Journal of Supercritical Fluids, 55: 955–962.
  • Yong, P., Glattauer, V.; Werkmeister, J. A, W., Ramshaw, J. A. M. 2004). Evaluation of collagen products for cosmetic application. Journal of cosmetic science, 55: 327-341.
  • Yoon, N. Y, Eom, T. K., Kim, M. M., Kim, S. K. 2009. Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry, 27: 57(10):4124-4129.
  • Ziboh, V.A., Chapkin, R.S. Biologic significance of polyunsaturated fatty acids in the skin. Archives Dermatoly, 1987, 123 (12): 1686a-1690.