Ön işlemden geçirilmiş atık arpa kullanarak Rhodobacter sphaeroides O.U.001 ile hidrojen üretimi

Bu çalışmada, Rhodobacter sphaeroides O.U.001 kullanılarak hidrojen (H2) ve 5-aminolevulinik asitin (5-ALA) üretilmesi ile atık arpa’nın değerlendirilmesi hedeflendi. Öncelikle, 3 g toz halindeki atık arpa H2SO4 ile karıştırılarak 100 mL toplam hacimde karışım elde edildi ve sonrasında bu karışım 121 °C' de 30 dakika boyunca otoklavlanarak % 3’lük (a/h) atık arpa hidrolizatı hazırlandı. Fermente edilebilir basit şekerlerin önişlem ile ortaya çıkarılması ve hidrolizatın amonyum muhtevası, element bileşimi ve ışık geçirgenliği bakımından analitik olarak incelenmesinin ardından, farklı şeker konsantrasyonlarına sahip çeşitli büyüme ortamları (5 - 6 - 7 - 8 g/L) hazırlandı. Hücreler bu ortamlarda H2 ve 5-ALA yapımlarını destekleyen foto-heterotrofik koşullar altında çoğaltıldı. Ortamlardaki pH değişimleri, büyüme, hidrojen üretimi ve 5-ALA üretimi izlendi. Sonuçlar, % 3’lük (a/h) atık arpa hidrolizatından hazırlanan tüm ortamların hücre büyümesini önemli ölçüde desteklediğini gösterdi. En yüksek OD değeri (OD660: 1.71) 8 g/L şeker kullanılarak elde edildi. Ayrıca, her bir biyoreaktörde biyolojik H2 üretimi gözlemlendi. Özellikle, en yüksek hidrojen birikimi (0.29 L H2/L), 6 g/L şeker içeren ortamda elde edildi. Ancak, hiçbir ortamda 5-ALA tespit edilmedi. Sonuç olarak, test edilen koşullar altında % 3’lük (a/h) atık arpa hidrolizatı kullanılarak önemli miktarda hücre büyümesi ve biyolojik hidrojen üretimi sağlandı, ancak saptanabilir miktarda 5-ALA üretimi yoktu.

Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley

In the present study, valorization of waste barley by producing hydrogen (H2) and 5-aminolevulinic acid (5-ALA) using Rhodobacter sphaeroides O.U.001 was aimed. Firstly, 3 % (w/v) waste barley hydrolysate was prepared by treating 3 g of powdered waste barley with H2SO4 in a total volume of 100 mL mixture and then autoclaving this mixture at 121 ºC for 30 min. Upon generation of fermentable simple sugars by pretreatment and analytical examination of the hydrolysate in terms of ammonium content, element composition and light transmittance, various types of growth media containing various concentrations of sugar (5 - 6 - 7 - 8 g/L) were prepared. The cells were cultivated in these media under photo-heterotrophic conditions which favor H2 and 5-ALA generations. pH changes, growth, H2 production and 5-ALA generation were monitored in the media. The results showed that all the media prepared from 3 % (w/v) waste barley hydrolysate sustained the cell growth appreciably. The highest OD value (OD660: 1.71) was attained when using 8 g/L sugar. Furthermore, biological H2 evolution was seen in each bioreactor. In particular, the highest hydrogen accumulation (0.29 L H2/L) was achieved in 6 g/L sugar-containing medium. However, 5-ALA was not detected in any of the media. To conclude, considerable cell growth and biological hydrogen production was achieved using 3 % (w/v) waste barley hydrolysate under the conditions tested but there was no detectable 5-ALA generation.

___

  • Aydın H. and İlkılıç C., Air pollution, pollutant emissions and harmfull effects, Journal of Engineering and Technology, 1 (2017) 8-15.
  • Sharma B. S., Jain S., Khirwadkar P., Kulkarni S., The effects of air pollution on the environment and human health, Indian Journal of Research in Pharmacy and Biotechnology, 1-3 (2013) 391-396.
  • Das D. and Veziroğlu T. N., Hydrogen production by biological processes: a survey of literature, Int. J. Hydrogen Energy, 26 (2001) 13-28.
  • Reverberi A. P., Klemeš J. J., Varbanov P. S., Fabiano B., A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods, Journal of Cleaner Production, 136 (2016) 72-80.
  • Kars G., Biyokütleden biyohidrojen üretimi, Tarım Makinaları Bilimi Dergisi, 8-3 (2012) 265-270.
  • Özgür E., Mars A. E., Peksel B., Louwerse A., Yücel M., Gündüz U., Claassen P. A. M., Eroğlu İ., Biohydrogen production from beet molasses by sequential dark and photofermentation, Int. J. Hydrogen Energy, 35 (2010) 511-517.
  • Kars G. and Gündüz U., Towards a super H2 producer: improvements in photofermentative biohydrogen production by genetic manipulations. Int. J. Hydrogen Energy, 35 (2010) 6646-6656.
  • Kars G., Improvement of biohydrogen production by genetic manipulations in Rhodobacter sphaeroides O.U.001. Biotechnology, Ph.D. Thesis, Middle East Technical University; October 2008.
  • Sasaki K., Tanaka T., Nishizawa Y., Hayashi M., Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent waste from an anaerobic digestor, Appl. Microbiol. Biot., 32 (1990) 727-731.
  • Sasaki K., Watanabe M., Suda Y., Ishizuka A., Noparatnaraporn N., Applications Of Photosynthetic Bacteria For Medical Fields, J. Biosci. Bioeng., 10-5 (2005) 481-488.
  • Yiğit D. Ö., Gündüz U., Türker L., Yücel M., Eroğlu İ., Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U.001 grown in the waste water of a sugar refinery. J. Biotechnol., 70 (1999) 125-131.
  • Kars G. and Alparslan Ü., Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int. J. Hydrogen Energy, 38 (2013) 14488-14494.
  • Kars G. and Ceylan A., Biohydrogen and 5-aminolevulinic acid production from waste barley by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int. J. Hydrogen Energy, 38 (2013) 5573-5579.
  • Westermann P., Jorgensen B., Lange L., Ahring B. K., Christensen C. H., Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery, Int. J. Hydrogen Energy, 32 (2007) 4135-4141.
  • Rabelo S. C., Carrere H., Maciel Filho R., Costa A. C., Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresour. Technol., 102 (2011) 7887-7895.
  • Béligon V., Noblecourt A., Christophe G., Lebert A., Larroche C., Fontanille P., Proof of concept for biorefinery approach aiming at two bioenergy production compartments, hydrogen and biodiesel, coupled by an external membrane, Biofuels, 9-2 (2018) 163-174.
  • Argun H., Gökfiliz P., Karapinar I., Biohydrogen Production Potential of Different Biomass Sources. In: Singh A., and Rathore D. (Eds.). Biohydrogen Production: Sustainability of Current Technology and Future Perspective. New Delhi: Springer, 2017; pp 11-48.
  • Reginatto V. and Antônio R. V., Fermentative hydrogen production from agroindustrial lignocellulosic substrates, Brazilian Journal of Microbiology, 46-2 (2018) 323-335.
  • Biebl H. and Pfennig N., Isolation of members of the family Rhodosprillaceae. In: Starr M. P., Stolp H., Trüper H., Balows A., Schlegel H. G. (Eds). The prokaryotes. New York: Springer-Verlag, 1981; pp 267-273.
  • Koku H., Eroğlu İ., Gündüz U., Yücel M., Türker L., Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 27 (2003) 1315-1329.
  • Kars G., Gündüz U., Yücel M., Rakhely G., Kovacs K. L., Eroğlu İ., Evaluation of hydrogen production by Rhodobacter sphaeroides O.U.001 and its hupSL deficient mutant using acetate and malate as carbon sources, Int. J. Hydrogen Energy, 34 (2009) 2184-2190.
  • Akköse S., Gündüz U., Yücel M., Eroğlu İ., Effects of ammonium ion, acetate, and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001, Int. J. Hydrogen Energy, 34 (2009) 8818-8827.
  • Kars G., Gündüz U., Yücel M., Türker L., Eroğlu İ., Hydrogen production and transcriptional analysis of nifD, nifK and hupS genes in Rhodobacter sphaeroides O.U.001 grown in media with different concentrations of molybdenum and iron, Int. J. Hydrogen Energy, 31 (2006) 1536-1544.
  • Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 8 (1956) 350-366.
  • Mauzerall D. and Granick S., the occurrence and determination of d-aminolevulinic acid and porphobilinogen in urine, J. Biol. Chem., 219 (1956) 435-446.
  • Ceylan A., Biohydrogen and aminolevulinic acid production from waste barley by Rhodobacter sphaeroides. Biology, MSc Thesis, Selçuk University; July 2012.
  • Liu T., Zhu L., Wei W., Zhou Z., Function of glucose catabolic pathways in hydrogen production from glucose in Rhodobacter sphaeroides, Int. J. Hydrogen Energy, 6016-39 (2014) 4215-4221.
  • Pattanamanee W., Chisti Y., Choorit W., Photofermentive hydrogen production by Rhodobacter sphaeroides S10 using mixed organic carbon: effects of the mixture composition, Applied Energy, 157 (2015) 245-254.
  • Yeşilada Ö., Şık S., Şam M., Treatment of olive oil mill wastewater with fungi, Turk. J. Biol., 23 (1999) 231-240.
  • Eroğlu E., Gündüz U., Yücel M., Türker L., Eroğlu İ., Photobiological hydrogen production by using olive mill wastewater as a sole substrate source, Int. J. Hydrogen Energy, 29 (2004) 163-171.
  • Uyar B., Eroğlu İ., Yücel M., Gündüz U., Türker L., Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int. J. Hydrogen Energy, 32-18 (2007) 4670-4677.
  • Laurinavichene T. and Tsygankov A., Inoculum density and buffer capacity are crucial for H2 photoproduction from acetate by purple bacteria, Int. J. Hydrogen Energy, 43-41 (2018) 18873-18882.
  • Demiriz B.O., Kars G., Yücel M., Eroğlu İ., Gündüz U., Hydrogen and poly-β-hydroxybutyric acid production at various acetate concentrations using Rhodobacter capsulatus DSM 1710. Int. J. Hydrogen Energy, 44-32 (2019) 17269-17277.
  • Feng J., Yang H., Guo L., The photosynthetic hydrogen production performance of a newly isolated Rhodobacter capsulatus JL1 with various carbon sources. Int. J. Hydrogen Energy, 43-30 (2018) 13860-13868.