Truncated Truncated Dodecahedron ve Truncated Truncated Icosahedron Uzayları

Konveks kümeler teorisi, zengin uygulamalara sahip modern matematiğin canlı ve klasik bir alanıdır. Konveks kümelerin geometrik yönleri, bazı kavramlar, fakat öncelikle çokyüzlülerin tanıtılmasıyla geliştirilmiştir. Konveks olduğunda bir çokyüzlü, ℝ? de çok önemli bir özel cisimdir. Öklid 3 boyutlu uzayın konveks alt kümelerinin bazı örnekleri Platonik cisimler, Arşimet cisimleri ve Arşimet dualleri veya Katalan cisimleridir. Metriklerle çokyüzlüler arasında bazı ilişkiler vardır. Örneğin, küp, sekizyüzlü, deltoidal icositetrahedron'un sırasıyla, maksimum, Taksi, Çin dama uzaylarının birim küresi olduğu görülmektedir. Bu çalışmada, kürelerinin truncated truncated dodecahedron ve truncated truncated icosahedron olan iki yeni metrik tanıtıldı.

Truncated Truncated Dodecahedron and Truncated Truncated Icosahedron Spaces

The theory of convex sets is a vibrant and classical field of modern mathematics with richapplications. The more geometric aspects of convex sets are developed introducing some notions, but primarilypolyhedra. A polyhedra, when it is convex, is an extremely important special solid in ℝ?. Some examples ofconvex subsets of Euclidean 3-dimensional space are Platonic Solids, Archimedean Solids and ArchimedeanDuals or Catalan Solids. There are some relations between metrics and polyhedra. For example, it has beenshown that cube, octahedron, deltoidal icositetrahedron are maximum, taxicab, Chinese Checker’s unit sphere,respectively. In this study, we give two new metrics to be their spheres truncated truncated dodecahedron andtruncated truncated icosahedron.

___

  • Ö. Gelisgen and R. Kaya, The Isometry Group of Chinese Checker Space, International Electronic Journal Geometry, 8-2 (2015) 82–96.
  • Z. Can, Ö. Gelişgen and R. Kaya, On the Metrics Induced by Icosidodecahedron and Rhombic Triacontahedron, Scientific and Professional Journal of the Croatian Society for Geometry and Graphics (KoG), 19 (2015) 17–23.
  • P. Cromwell, Polyhedra, Cambridge University Press (1999).
  • A.C. Thompson, Minkowski Geometry, Cambridge University Press, Cambridge 1996.
  • Z. Can, Z. Çolak and Ö. Gelişgen, A Note On The Metrics Induced By Triakis Icosahedron And Disdyakis Triacontahedron, Eurasian Academy of Sciences Eurasian Life Sciences Journal / Avrasya Fen Bilimleri Dergisi, 1 (2015) 1–11.
  • Z. Çolak and Ö. Gelişgen, New Metrics for Deltoidal Hexacontahedron and Pentakis Dodecahedron, SAU Fen Bilimleri Enstitüsü Dergisi, 19-3 (2015) 353-360.
  • T. Ermis and R. Kaya, Isometries the of 3- Dimensional Maximum Space, Konuralp Journal of Mathematics, 3-1 (2015) 103–114.
  • Ö. Gelişgen, R. Kaya and M. Ozcan, Distance Formulae in The Chinese Checker Space, Int. J. Pure Appl. Math., 26-1 (2006) 35–44.
  • Ö. Gelişgen and R. Kaya, The Taxicab Space Group, Acta Mathematica Hungarica, 122-1,2 (2009) 187–200.
  • Ö. Gelişgen and Z. Çolak, A Family of Metrics for Some Polyhedra, Automation Computers Applied Mathematics Scientific Journal, 24-1 (2015) 3–15.
  • Ö. Gelişgen, On The Relations Between Truncated Cuboctahedron Truncated Icosidodecahedron and Metrics, Forum Geometricorum, 17 (2017) 273–285.
  • Ö. Gelişgen and Z. Can, On The Family of Metrics for Some Platonic and Archimedean Polyhedra, Konuralp Journal of Mathematics, 4-2 (2016) 25–33.
  • M. Senechal, Shaping Space, Springer New York Heidelberg Dordrecht London 2013.
  • J. V. Field, Rediscovering the Archimedean Polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Dürer, Daniele Barbaro, and Johannes Kepler, Archive for History of Exact Sciences, 50-3,4 (1997) 241–289.
  • http://www.sacred-geometry.es/?q=en/content/archimedean-solids Retrieved January, 5, 2019.
  • T. Ermis, On the relations between the metric geometries and regular polyhedra, PhD Thesis, Eskişehir Osmangazi University, Graduate School of Natural and Applied Sciences, (2014).
  • Ö. Gelişgen, T. Ermis, and I. Gunaltılı, A Note About The Metrics Induced by Truncated Dodecahedron And Truncated Icosahedron, InternationalJournal of Geometry, 6-2 (2017) 5–16.