Hiperlatisler Üzerinde Genelleştirilmiş Türevler

Bu makalede hiperlatisler üzerinde genelleştirilmiş türev kavramı tanıtıldı ve bunların bazı temel özellikleri elde edildi.

Generalized Derivations of Hyperlattices

In this paper the notion of generalized derivation for a hyperlattice is introduced and some basic properties of them are derived.2010 Mathematics Subject Classification: 06B35; 06B75.

___

  • F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934) 45–49.
  • R. Ameri, M. Norouzi, New fundamental relation of hyperrings, European J. Combin. 34 (5) (2013) 884–891.
  • P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht (2003).
  • J. Jantosciak, Transposition hypergroups: noncommutative join spaces. J. Algebra 187(1) (1997) 97–119.
  • J. Zhan, B. Davvaz, P. K. Shun, Probability n-arybypergroups, Information Science 180 (2010) 1159–1166.
  • R. Rosaria. Hyperaffine planes over hyperrings, Discrete Math. 155(1-3)(1996) 215–223.
  • J. Zhan, C. Irina,Γ-hypermodules:isomorphism theorems and regularrelations, U.P.B. Sci Bull, Ser. A 73 (2011) 71–78.
  • M. Konstantinidou, J. Mittas. An introduction to the theory of hyperlattices. Math. Balkanica,1977, 7: 187–193.
  • Mittas, M. Konstantinidou, Sur unenouvellegeneration de la notion de treillis,Lessupertreilliset certaines de leursproprietiesgenerales,AnnSciUnivBlaise Pascal Ser Math, 25 (1989) 61–83.
  • Xiaozhi Guo, Xiaolong Xin, Hyperlattices, Pure and Applied Mathematics (Xi’an) 20 (2004) 40–43.
  • A. Rahnami-Barghi. The prime ideal theorem for distributive hyperlattices. Ital. J. Pure Appl. Math 10 (2001) 75–78.
  • S. Rasouli, B. Davvaz, Construction and spectral topology on hyperlattices. Mediterr. J. Math.,7(2) (2010) 249–262.
  • S. Rasouli, B. Davvaz, Lattices derived from hyperlattices, Commun. Algebra 38 (8) (2010) 2720–2737. [14] H. E. Bell, G. Mason,Derivation in Near-Rings, North-Holland Math. Stud., North-Holland, Amsterdam 137 (1987).
  • E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(1957) 1093–1100.
  • M. Bresar, On the distance of composition of the two derivations to the generalized derivations, Glasgow math. J., 33(1), (1991), 89-93.
  • N. O. Alshehri, Generalized derivations of lattices, Int. J. Contemp. Math. Sciences, 5 (13) (2010) 629-640.
  • J. Wang, Y. Jun, Xiaolong Xin, Y. Zou, On derivations of bounded hyperlattices, Journal of Mathematical Research and Applications 36(2) (2016) 151-161.