Doğal Taşların Sürtünme Katsayılarını (COF) Belirleyerek Yüzey Özelliklerinin Kayma Güvenlik Risk Analizi

Çalışmada yalınayak ve ayakkabı ile yürürken doğal taş zemin kaplamalarında yayaların kayma riskini azaltmak için en uygun yüzey işleme tekniklerini ve çevre koşullarını belirlemeye çalışılmıştır. Bu çalışmada DIN EN 51097, DIN EN 51130 ve TS EN 14231 standartları kullanılarak üç farklı yöntemle yüzeyleri işlenmiş doğal taşların sürtünme katsayıları (COF) belirlenmiştir. Sürtünme katsayıları (COF), cilalı, honlu, patinatolu ve eskitilmiş yüzey işleme teknikleri ile uygulanan boyutlandırılmış sınıflandırılmış 15 farklı doğal taş üzerinde eğik düzlem testi ve pandül yöntemi kullanılarak belirlenmiştir. Doğal taşların COF değerlerini etkileyen parametrelerin ortam koşulları (yaş, kuru ve yağlı) ve uygulanan yüzey işleme teknikleri olduğu bulunmuştur. Doğal taşların istatistiksel sonuçlara göre COF değerlerine bağlı olarak güvenli kullanım alanlarına göre sınıflandırılmıştır.

Slip Safety Risk Analysis of Surface Properties by Determining Coefficients of Friction (COF) of Natural Stones

The present work attempts to determine the most suitable surface processing techniques and environment conditions to reduce the slipping risk of pedestrians while walking barefoot and wearing shoes on natural stone floor coverings. In this study, coefficients of friction (COF) of surface-processed natural stones with three different methods were determined by using DIN EN 51097, DIN EN 51130 and TS EN 14231 standards. Coefficients of friction (COF) have been determined by using ramp test equipment and a pendulum method on 15 different types of dimensioned-classified rocks applied with polishing, honing, patinated and tumbling surface processing techniques. It was found that the parameters that affected COF values of the natural stones were environment conditions (wet, dry and lubricated) and the applied surface processing techniques. The natural stones were then grouped according to places for safe utilization depending on COF values and surface roughness, according to the statistical results.

___

  • [1]. Adams, N., 1997; “Slips and Falls-Some Arguments About Measuring Coefficients ofFriction (COF)”, Ergonomics [2] Bowman, R., 2003; “Slip Resistance Ignorance: A Recipefor Costly Falls”, www.infotile.com/tiletoday/issues/pdf/40article.pdf.
  • [2]. Bowman R (2004) Practical Aspects of Slip Resistance of Stone, see http://www.discoveringstone.com (accessed 29/05/2011).
  • [3]. Bowman R (2010) Slip Resistance Testing-Zones of Uncertainty. Bol. Soc. Esp. Ceram. Vidrio, Vol. 49(4), pp. 227-238.
  • [4]. Chang, W.R., 1999; “The effect of surface roughness on the measurement of slip resistance”, International Journal of Industrial Ergonomics, 24, 299-313.
  • [5]. Chang WR, Matz S (2001) The slip resistance of common footwear materials measured with two slipmeters. Applied Ergonomics 32(6): 540-558.
  • [6]. Chang WR, Kim IJ, Manning DP, Bunterngchit Y (2001) The role of surface roughness in the measurement of slipperiness. Ergonomics 44(13): 1200-1216.
  • [7]. Coşkun, G., 2013. Karbonat Kökenli Bazı Doğal Taşlarda Yüzey İşleme Tekniklerinin ve Pürüzlülüğün Kayma Direncine Etkileri”, Doktora Tezi., Eskişehir Osmangazi Üniversitesi,Fen Bilimleri Enstitüsü, 293,2013.
  • [8]. Çoşkun, G., Sarıışık, G., & Sarıışık, A. (2016). Classification of parameters affecting slip safety of limestones. Cogent Engineering, 3(1), 1217821.
  • [9]. DIN EN 51097, 1992; “Testing of floor Coverings; Determination of The Anti-Slip Properties; Wet Loaded Barefoot Areas; Walking Method-Ramp Test”, Deutsche Norm, Berlin.
  • [10]. DIN EN 51130, 1992; “Testing of Floor Coverings; Determination of The Anti-Slip Properties; Workrooms and Fields of Activities with Slip Danger; Walking Method; Ramp Test”, Deutsche Norm, Berlin
  • [11]. Grönqvist, R., 1995; “Mechanisms of friction and assessment of slip resistance of new and used footwear sales on contaminated metals”, Ergonomics, 38, 224–41.
  • [12]. Grönqvist R, Hirvonen M, Tohv A (1999) Evaluation of three portable floor slipperiness testers. International Journal of Industrial Ergonomics 25, 85-95.
  • [13]. Gabbrielli Katalog,2011
  • [14]. Kim, I.J., 1996; “Microscopic investigation to analyze the slip resistance of shoes”, Proceedings of the Fourth Pan Pacific Conference on Occupational Ergonomics, November. Taiwan, ROC, 68-73.
  • [15]. Kim, I.J., 2001; “Microscopic observations of the progressive wear on shoe surfaces that affect the slip resistance characteristics”, International Journal of Industrial Ergonomics, 28, 17-29.
  • [16]. Kim, I., Smith, R., 2000. Observation of the foor surface topography changes in pedestrian slip resistance measurements. International Journal of Industrial Ergonomics 26, 581-601.
  • [17]. Kim, I., 2004a. Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: part I - basic concepts and theories. International Journal of Industrial Ergonomics 33, 395-401.
  • [18]. Kim, I., 2004b. Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: part II – experiments and validations. International Journal of Industrial Ergonomics 33, 403-414.
  • [19]. Leclercq, S., 1999. The prevention of slipping accidents: a review and discussion of work related to the methodology of measuring slip resistance. Safety Science 31, 95–125.
  • [20]. Manning, D.P., Jones, C., Rowland ,F.J., Roff, M., 1998; “The surface roughness of a rubber soling material determines the coefficient of friction on water-lubricated surfaces”, Journal of Safety Research, 29, 275–283.
  • [21]. Powers CM, Kulig K, Flynn J, Brault JR (1999) Repeatability and bias of two walkway safety tribometers. Journal of Testing and Evaluation 27(6): 368-374.
  • [22]. Ricotti R, Delucchi M, Cerisola G (2009) A comparison of results from portable and laboratory floor slipperiness testers. International Journal of Industrial Ergonomics, 39, 353-357.
  • [23]. Rowland FJ, Jones C, Manning DP (1996) Surface roughness of footwear soling materials: Relevance to slip resistance. Journal of Testing and Evaluation, 24 (6), 368–376. http://dx.doi.org/ 10.1520/JTE11459J.
  • [24]. Sarıışık A (2009) Safety analysis of slipping barefoot on marble covered wet areas. Safety Science 47(10): 417-1428.
  • [25]. Sarıışık A, Akdaş H, Sarıışık G, Çoşkun G (2011) Slip Safety Analysis of Differently Surface Processed Dimension Marbles. Journal of Testing and Evaluation, Vol. 39, No. 5.
  • [26]. Strandberg, L., 1983. Ergonomics applied to slipping accidents. In: Kvalseth, T.O. (Ed.), Ergonomics of Workstation Design. Butterworths, London, pp. 201-228.
  • [27]. TS EN 14231 (2004) “Natural Stone Test Methods-Determination of the Slip Resistance by Means of the Pendulum Tester,” Turkish Standards Institute, p.13.