Çarpımsal Kafeslerde Bir Eleman ile İlgili 3-lü Sıfır Bölen Hipergrafı
? bir çarpımsal kafes ve ?,? nin bir has elemanı olsun. ? ile ilgili ? nin 3-lü sıfır bölen hipergrafını tanıttık öyle ki bu hipergrafın köşeleri{?1∈?−{?}|?1?2?3≤?⇒?1?2≰?,?2?3≰? ?? ?1?3≰? ℎ??ℎ???? ?2,?3∈?−{?} ?ç??} kümesinin elemanlarıdır ki burada ?1,?2 ve ?3 komşudur, yani, {?1,?2,?3} bu hipergarfın bir hiperkenarıdır ancak ve ancak ?1?2?3≤?⇒?1?2≰?,?2?3≰? ?? ?1?3≰?. Bu çalışma boyunca, bu hipergrafı ?3(?,?) ile göstereceğiz. Çarpımsal bir kafes üzerinde bu hipergrafın birçok özelliğini araştırdık. Ayrıca, ?3(?,?) nin diametresinin bir alt sınırını bulduk ve bu hipergrafın bağlantılı olduğunu gösterdik.
3-Zero-Divisor Hypergraph with Respect to an Element in Multiplicative Lattice
Let ? be a multiplicative lattice and ? be a proper element of ?. We introduce the 3-zero-divisor hypergraph of ? with respect to ? which is a hypergraph whose vertices are elements of the set {?1∈?−{?}|?1?2?3≤?⇒?1?2≰?,?2?3≰? ??? ?1?3≰? ??? ???? ?2,?3∈?−{?}} where distinct vertices ?1,?2 and ?3 are adjacent, that is, {?1,?2,?3} is a hyperedge if and only if ?1?2?3≤?⇒?1?2≰?,?2?3≰? ??? ?1?3≰?. Throughout this paper, the hypergraph is denoted by ?3(?,?). We investigate many properties of the hypergraph over a multiplicative lattice. Moreover, we find a lower bound of diameter of ?3(?,?) and obtain that ?3(?,?) is connected.
___
- Jayaram C. and Johnson E.W., Some Results on Almost Principal Element Lattices, Period. Math. Hungar, 31 (1995) 33-42.
- Anderson D.D., Abstract Commutative Ideal Theory without Chain Condition, Algebra Universalis, 6 (1976) 131-145.
- Anderson D.F. and Livingston P.S., The Zero Divisor of a Commutative Ring, J. of Algebra, (1999) 434-447.
- Dilworth R.P., Abstract Commutative Ideal Theory, Pacific Journal of Mathematics 12 (1962) 481-498.
- Eslahchi Ch. and Rahimi A.M., The k-Zero-Divisor Hypergraph of a Commutative Ring, Int. J. Math. Math. Sci. Art. 50875 (2007) 15.
- Beck I., Coloring of Commutative Rings, J. of Algebra, (1988) 208-226.
- Selvakumar K. and Ramanathana V., Classification of non-Local Rings with Genus One 3-zero-divisor Hypergraphs, Comm. Algebra, (2016) 275-284.
- Akbari S. and Mohammadian A., On the Zero-Divisor Graph of a Commutative Ring, J. Algebra, (2004) 847-855.
- Elele A.B. and Ulucak G., 3-Zero-Divisor Hypergraph Regarding an Ideal, 7 th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), 2017.
- Badawi A., On 2-absorbing Ideals of Commutative Rings, Bull. Austral. Math. Soc.,75 (2007) 417-429.