Fuzzy Laplace Dönüşümüyle Pozitif ve Negatif Fuzzy Sayı Katsayılı Birinci-Mertebe Fuzzy Başlangıç Değer Problemleri Üzerine Bir Çalışma
Bu çalışmada, fuzzy Laplace dönüşümüyle pozitif ve negatif fuzzy sayı katsayılı birinci-mertebe fuzzy diferansiyel denklemler için fuzzy başlangıç değer problemleri çalışıldı. Çözümler genelleştirilmiş diferansiyellenebilirlik yaklaşımı altında bulundu. Örnekler çözüldü. Çözümlerin şekilleri Mathematica programı kullanarak çizildi. Son olarak, sonuçlar verildi.
A Study on First-Order Fuzzy Initial Value Problems with Positive and Negative Fuzzy Number Coefficients by Fuzzy Laplace Transform
In this paper, fuzzy initial value problems for first-order fuzzy differential equations with positive and negative fuzzy number coefficients are studied by fuzzy Laplace transform. Solutions are found under the approach of generalized differentiability. Examples are solved. Figures of the solutions are drawn using the Mathematica program. Finally, conclusions are given.
___
- Kadel A. and Byatt W.J., Fuzzy Differential Equations, in: Proceedings of International Conference
Cybernetics and Society, Tokyo, (1978) 1213-1216.
- Zadeh L.A., The Concept of a Linguistic Variable and its Application to Approximate Reasoning,
Information Sciences, 8 (1975) 199-251.
- Hüllermeier E., An Approach to Modelling and Simulation of Uncertain Dynamical Systems,
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 5-2 (1997) 117-137.
- Kaleva O., Fuzzy Differential Equations, Fuzzy Sets and Systems, 24-3 (1987) 301-317.
- Gültekin H. and Altınışık N., On Solution of Two-Point Fuzzy Boundary Value Problems, The
Bulletin of Society for Mathematical Services and Standards, 11 (2014) 31-39.
- Bede B., Rudas I.J. and Bencsik A.L., First Order Linear Fuzzy Differential Equations under
Generalized Differentiability, Information Sciences, 177-7 (2007) 1648-1662.
- Gültekin Çitil H., The Relationship between the Solutions according to the Noniterative Method and
the Generalized Differentiability of the Fuzzy Boundary Value Problem, Malaya Journal of
Matematik, 6-4 (2018) 781-787.
- Ceylan T. and Altınışık N., Fuzzy Eigenvalue Problem with Eigenvalue Parameter Contained in the
Boundary Condition, Journal of Science and Arts, 3-44 (2018) 589-602.
- Allahviranloo T. and Barkhordari Ahmadi M., Fuzzy Laplace Transforms, Soft Computing, 14-3 (2010) 235-243.
- Patel K.R. and Desai N.B., Solution of Fuzzy Initial Value Problems by Fuzzy Laplace Transform, Kalpa Publications in Computing, 2 (2017) 25-37.
- Patel K.R. and Desai N.B., Solution of Variable Coefficient Fuzzy Differential Equations by Fuzzy Laplace Transform, International Journal on Recent and Innovation Trends in Computing and Communication, 5-6 (2017) 927-942.
- Liu H.-K., Comparison Results of Two-Point Fuzzy Boundary Value Problems, International Journal of Computational and Mathematical Sciences, 5-1 (2011) 1-7.
- Salahshour S. and Allahviranloo T., Applications of Fuzzy Laplace Transforms, Soft Computing, 17-1 (2013) 145-158.
- Shirin S. and Saha G.K., A New Computational Methodology to Find Appropriate Solutions of Fuzzy Equations, Mathematical Theory and Modeling, 2-1 (2011) 1-10.
- Lakshmikantham V. and Mohapatra R.N., Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis, London, New York, 2003.
- Khastan A. and Nieto J.J., A Boundary Value Problem for Second Order Fuzzy Differential Equations, Nonlinear Analysis: Theory, Methods and Applications, 72-9-10 (2010) 3583-3593.