Photonic Crystal Slab Biosensors and its Applications

Bu çalışmada, fotonik kristalden tasarlanan biyosensör cihazı için rezonans frekansını değiştiren sıvı ortamın kırılma indisine ve titanyum dioksit (TiO) birim hücre içindeki küresel gümüş metal nanopartikülünün yarıçapına bağlı olarak değişen dolgu faktörü, duyarlılık, kalite faktörü ve lokal yoğunluk incelendi. Bu yapı tipik olarak protein-protein etkileşimi, ilkel hücrelerin görüntülenmesi, kanser hücresi metastazının var olup olmadığının, enzim ve Deoksiribonükleik asit (DNA) mikrodizilerin belirlenmesi için kullanılır. Önerilen hesaplamalar, rezonant dalga boyundaki kaymayı görmek için iki boyutlu TiO2 fotonik kristal yapısında yaratılan boşluklarının kare örgüsünü ve hava boşluklarına yerleştirilen küçük bir küresel nanopartikülünü kapsamaktadır. Hesaplamalarda örgü sabiti olarak (a= 1 ?m) kullanıldı. Analizler 1500-1550 nm dalga boyu aralığında yapıldı. Hesaplamalar, MIT Elektromanyetik Denklem Yayılımına dayalı zamanda sonlu farklar yöntemi yazılımı ile yapılmıştır

Fotonik Kristal Dilimli Biyosensörler ve Uygulamaları

In this study, filling factor, sensitivity, quality factor, and local density of states variation depending on resonance frequency changing refractive index of liquid medium and radius of spherical silver metal nanoparticle inside unit cell for titanium dioxide (TiO2) photonic crystal slab biosensor device is investigated. This structure is typically used for protein-protein interaction, display of primitive cells, cancer cell metastasis, enzyme detection, Deoxyribonucleic acid (DNA) microarrays. Proposed calculations include a square lattice of air holes created in two-dimensional TiO2 photonic crystal structure and a small spherical sphere nanoparticle into the air holes is put in order to see shift in resonant wavelength’s. Lattice constant (a= 1 μm) was used in the calculations. Analyses have been performed in the wavelength range of 1500-1550 nm. The calculations were made by software MIT Electromagnetic Equation Propagation based finite-difference time-domain method

___

  • 1. Yun, M., Wan, Y., Liang, J., Xia, F., Liu, M., Ren, L., 2012. Multi-Channel Biosensor Based on Photonic Crystal Waveguide and Microcavites, Optik, vol. 123, pp. 1920-1922.
  • 2. See, G. G., Naughty, M. S., Tang, T., Bonita, Y., Joo, J., Trefonas, P., Deshpande, K., Kenis, P. J. A., Nuzzo, R. G., Cunningham, B. T., 2015. Region Specific Enhancement of Quantum Dot Emission using Interleaved TwoDimensional Photonic Crystals, Applied Optics, vol. 54, no. 9, pp. 2302-2308.
  • 3. Chen, W., Long, K. D., Lu, M., Chaudhery, V., Yu, H., Choi, J. S., Polans, J., Zhuo, Y., Harley, B. A., Cunningham, B. T., 2013. Photonic Crystal Enhanced Microscopy for Imaging of live cell adhesion, Analyst, vol. 138, no. 20. pp. 5886-5894.
  • 4. Cunningham, B. T., Zhang, M., Zhuo, Y., Kwon, L., Race, C., 2014. Review of recent advances in Biosensing with Photonic Crystals, IEEE Sensors Journal, 2014 IEEE Sensors Conference, Doi. 10.1109/JSEN.2015. 2429738, April 2015.
  • 5. Zhang, M., Peh, J., Hergenrother, P. J., Cunningham, B. T., 2014. Detection of Protein-Small Molecule Binding using a SelfReferencing External Cavity Laser Biosensor, J. Am. Chem. Soc., vol. 136, pp. 5840-5843.
  • 6. Peterson, R. D., Cunningham, B. T., Andrade, J., 2014. A Photonic Crystal Biosensor Assay for Ferritin Utilizing Iron-Oxide Nano Particles, Biosens. and Bioelectron., Vol. 56, pp. 320-327.
  • 7. Shamah, S. M., Cunningham, B. T., 2011. Label-free Cell-based Assays using Photonic Crystal Optical Biosensors, Analyst, vol. 136, pp. 1090-1102.
  • 8. Tan, Y., Sutanto, E., Alleyne, A. G., Cunningham, B. T., 2014. Photonic Crystal Enhancement of a Homogeneous Fluorescent Assay using Submicron Fluid Channels Fabricated by E-jet Patterning, J. Biophotonics, Vol. 3-4, pp. 266-275.
  • 9. Pineda, M. F., Chan, L. L., Kuhlenschmidt, T., Kuhlenschmidt, M., Cunningham, B.T., 2009. Rapid Label-free Selective Detection of Porcine Rotavirus using Photonic Crystal Biosensors, IEEE Sensors Journal, vol. 9, no.
  • 4, pp. 470-477. 10.Jardinier, E., Pandraud, G., Pham, M. H., French, P. J., Sarro, P. M., 2009. Atomic Layer Deposition of TiO2 Photonic Crystal Waveguide Biosensors, J. Phys., Conf. Series 187, 012043.
  • 11. Kafi, A. K. M., Wu, G., Chen, A., 2008. A Novel Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase onto Au-modified Titanium Dioxide Nanotub Arrays, Biosens. Bioelectron., vol. 24, pp. 566-571.
  • 12.Cunningham, B. T., Li, P., Schulz, S., Lin, B., Baird, C., Gerstenmaier, J., Genick, C., Wang, F., Fine, E., Laing, L., 2004. Label-free Assays on the BIND System, J. Biomol. Screen., vol. 9, pp. 481-490.
  • 13. Na, Z., Tao, Y., Kui, J., Cai-Xia, S., 2010. Electrochemical Deoxyribonucleic Acid Biosensor Based on Multiwalled Carbon Nanotubes/Ag-TiO2 Composite Film for LabelFree Phosphinothricin Acetyltransferase Gene Detection by Electrochemical Impedance Spectroscopy, Chin. J. Anal. Chem., vol. 38, no. 3, pp. 301-306.
  • 14. Zhuo, Y., Hu, H., Chen, W., Lu, M., Tian, L., Yu, H., Long, K. D., Chow, E., W. King, P., Singamaneni, S., Cunningham, B. T., 2014. Single Nano Particle Detection using Photonic Crystal Enhanced Microscopy, Analyst, vol. 139, no. 5, pp. 1007-1015.
  • 15.Chaudhery, V., George, S., Lu, M., Pokhriyal, A., Cunningham, B.T., 2013. Nanostructured Surfaces and Detection Instrumentation for Photonic Crystal Enhanced Fluorescence, Sensors, vol. 13, pp. 5561-5584.
  • 16.Johnson, S. G., Fan, S. H., Villeneuve, P. R., Joannopoulos, J. D., Kolodziejski, L. A., 1999. Guided Modes in Photonic Crystal Slabs, Phys. Rev. B., vol. 60. no. 8, 5751–5758.
  • 17. Fan, S., Joannopoulos, J. D., 2002. Analysis of Guided Resonances in Photonic Crystal Slabs, Phys. Rev. B., vol. 65 no. 23, pp. 235112(1)- 235112(8).
  • 18. Mortensen, N. A., Xiao, S. S., Pedersen, J., 2008. Liquid-infiltrated Photonic Crystals: Enhanced Light-Matter Interactions for Labon-a-chip Applications, Microfluid. Nanofluid., vol. 4, no. 1-2, pp. 117–127.
  • 19. Qiu, P., Wang, G., Lu, J., Wang, H., 2012. Local Density of States in Photonic Crystal Cavity, Front. Optoelectron., vol. 5, no. 3, pp. 341-344.
  • 20. http://ab-initio.mit.edu/MEEP/Tutorial,
  • 21. Oskooi, A. F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J. D., Johnson, S. G., 2010. MEEP: A Flexible, Free-software Package for Electromagnetic Simulations by the FDTD Method, Comput. Phys. Commun., vol. 181, pp. 687–702.
  • 22.Joannopulous, J. D., Meade, R. D., Winn, J. N., 1995. Photonic Crystals: Molding the Flow of Light, University Press, Princeton.