Bir Nano Adsorbent ile Reaktif Black 39 Boyar Maddesinin Distile Sudan ve Sentetik Atıksudan Giderimi

Bu çalışmada yüzeyi nano manyetit ile kaplanmış Eucalyptus camaldulensis kabukları (NEK), bir tekstil boyar maddesi olan Reaktif Black 39"un (RB39) distile su ve sentetik atıksudan gideriminde düşük maliyetli bir adsorbent olarak kullanılmıştır. Adsorpsiyon üzerine temas zamanı, pH, sıcaklık NEK dozu ve başlangıç boyar madde konsantrasyonu gibi çeşitli parametrelerin etkisi araştırılmıştır. Çalışmalar NEK"in adsorpsiyon kapasitesinin başlangıç boyar madde konsantrasyonunun, pH"ın ve sıcaklığın artmasıyla arttığını, NEK dozunun artmasıyla azaldığını göstermiştir. 300 mg/L RB39"un 150 mL distile sudan yaklaşık %94 verimle giderilmesi için 0,2 g NEK yeterli olduğu tespit edilmiştir. Diğer taraftan 300 mg/L RB39"un sentetik atıksudan yaklaşık %92 verimle giderilmesi için 0,4 g NEK"in yeterli olduğu bulunmuştur. Freundlich izotermi (R2=0,993) adsorpsiyon sürecini Langmuir izotermine göre daha etkili bir şekilde açıklamıştır. Langmuir izotermi NEK"in maksimum adsorpsiyon kapasitesini 432,12 mg/g olarak tahmin etmiştir

Removal of Reactive Black 39 Dye from Distilled Water and Synthetic Wastewater by a Nano Adsorbent

In the present study, nano magnetite coated Eucalyptus camaldulensis barks (NEC) was used as a lowcost adsorbent for the removal of a textile dye Reactive Black 39 (RB39) from distilled water and synthetic wastewater. The effects of the various parameters, contact time, pH, temperature, NEC dosage and initial dye concentration on the adsorption were investigated. It was found that the adsorption capacity of NEC increases by increasing the RB39 concentration, pH and temperature and by decreasing the dosage of NEC. 0.2 g NEC was found to be sufficient for the removal of 300 mg/L RB39 from 150 mL distilled water with ∼94 % removal efficiency. On the other hand 0.4 g NEC was found sufficient for the removal of RB39 from synthetic wastewater with ∼92 % removal efficiency. The Freundlich isotherm model described the adsorption process more effectively (R2 = 0.993) than the Langmuir isotherm model. The Langmuir isotherm predicted a 432.12 mg/g maximum adsorption capacity of NEC

___

  • 1. Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan P.R., Subburaam, C.V., 2006. Adsorption of Dissolved Reactive Red Dye from Aqueous Phase onto Activated Carbon Prepared from Agricultural Waste, Bioresource Technology, 97(14), 1618–1622.
  • 2. Ahmad, M.A., Alrozi, R., 2011. Optimization of Rambutan Peel Based Activated Carbon Preparation Conditions for Remazol Brilliant Blue Removal, Chemical Engineering Journal, 168(1), 280–85.
  • 3. Ip, A.W.M., Barford, J.P., McKay, G., 2009. Reactive Black Dye Adsorption/desorption onto Different Adsorbents: Effect of Salt, Surface Chemistry, Pore Size and Surface Area, Journal of Colloid and Interface Science, 337(1), 32-38.
  • 4. Walker, G.M., Weatherley, L.R., 1997. Adsorption of Acid Dyes onto Granular Activated Carbon in Fixed Beds, Water Research, 31(8), 2093-101.
  • 5. Ngomsik, A.F., Bee, A., Draye, M., Cote, G., Cabuil V., 2005. Magnetic NanoMicroparticles for Metal Removal and Environmental Applications: a Review, C. R. Chimie, 8, 963–970.
  • 6. Kaminski, M.D., Nunez, L., 1999. ExtractantCoated Magnetic Particles for Cobalt and Nickel Recovery from Acidic Solution, J. Mag. Mat., 194, 31–36.
  • 7. Nethaji, S., Sivasamy, A., Mandal, A.B., 2013. Preparation and Characterization of Corn Cob Activated Carbon Coated with Nano-Sized Magnetite Particles for the Removal of Cr (VI), Bioresource Technology, 134, 94–100.
  • 8. Malik, P.K., 2003. Use of Activated Carbons Prepared from Saw Dust and Rice-Husk for Adsorption of Acid Dyes: a Case Study of Acid Yellow 36, Dyes and Pigments, 56, 239–249.
  • 9. Nevine, K.A., 2008. Removal of Reactive Dye from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Sugarcane Bagasse Pith, Desalination, 223, 152–161.
  • 10. Suhong, C., Jian, Z., Chenglu, Z., Qinyan, Y., Yan, L., Chao, L., 2010. Equilibrium and Kinetic Studies of Methylorange and Methylviolet Adsorption on Activated Carbon Derived from Phragmitesaustralis, Desalination, 252, 149–156.
  • 11. Taimur, K., Shamsul, R.M.K., Malay, C., 2010. Adsorptive Removal of Reactive Yellow 15 from Aqueous Solution by Coconut Coir Activated Carbon, Adsorption Science and Technology, 28 (7), 657–667.
  • 12.Wang, L., 2012. Application of Activated Carbon Derived from „Waste‟ Bamboo Culms for the Adsorption of Azo Disperse Dye: Kinetic, Equilibrium and thermodynamic Studies, Journal of Environmental Management, 102, 79–82.
  • 13. Mohammad, R.S., Mahdi, H., Gordon, M., 2014. Breakthrough Curve Analysis for Fixedbed Adsorption of azo Dyes Using Novel Pine Cone–Derived Active Carbon, Adsorption Science and Technology 32 (10), 791–806.
  • 14. Kouassi, N.A., Yao, A.Y., Kouassi, B.Y., Droh, L.G., Albert, T., 2015. Investigation of Dye Adsorption onto Activated Carbon from the Shells of Macoré Fruit, Journal of Environmental Management, 156, 10–14.
  • 15. Gabriela, G.S., Selene, M.A., Guelli, U.S., Debora, O., Antonio, A.U.S., 2016. The Application of Textile Sludge Adsorbents for the Removal of Reactive Red 2 Dye, Journal of Environmental Management, 168, 149–156.
  • 16.Ipek, G., Gulerman, A.S., Filiz, B.D., 2006. Importance of H2O2/Fe2+ Ratio in Fenton‟s Treatment of a Carpet Dyeing Wastewater, Journal of Hazardous Materials, 136, 763–769.
  • 17.Ilda, V., Yasemin, K.A., Unal, S.E., Zeren, B. G., Coskun, A., 2012. Techno-Economic Analysis of Textile Dye Bath Wastewater Treatment by Integrated Membrane Processes under the Zero Liquid Discharge Approach. Resources, Conservation and Recycling, 58, 25–35.
  • 18. Aksu, A., Sag, Y., Nourbakhsh, M., Kutsal, T., 1993. Atıksulardaki Bakır, Krom Ve Kurşun İyonlarının Çeşitli Mikroorganizmalarla Adsorplanarak Giderilmesinin Karşılaştırmalı Olarak İncelenmesi, Turkish Journal of Engineering & Environmental Sciences, 19, 285-293.
  • 19. Guptaa, S.S, Krishna, G.B., 2011. Kinetics of Adsorption of Metal Ions on Inorganic Materials: A Review, Advances in Colloid and Interface Science, 162(1–2), 39–58.
  • 20.Behzad, H., Susana, R.C., Mohammad, A.A., Mohammad, A., Inderjee, T.T., Shilpi, A., Vinod, K. G., 2015. Kinetics and Thermodynamics of Enhanced Adsorption of the Dye AR18 using Activated Carbons Prepared from Walnut and Poplar Woods, J. Mol. Liq., 208, 99-105.
  • 21. Senthilkumaar, S., Varadarajan, P.R., Porkodi, K., Subbhuraam, C.V., 2005. Adsorption of Methylene Blue onto Jute Fiber Carbon: Kinetics and Equilibrium Studies, J. Coll. Int. Sci., 284, 78-82.
  • 22. Almeida, C.A.P., Debacher, N.A., Downs, A.J., Cottet, L., Mello, C.A.D., 2009. Removal of Methylene Blue from Colored Effluents by Adsorption on Montmorillonite Clay, Journal of Colloid and Int. Sci., 332, 46-53.
  • 23. Arias, F., Sen, T.K., 2009. Removal of Zinc Metal Ion (Zn2+) from Its Aqueous Solution by Kaolin Clay Mineral: a Kinetic and Equilibrium Study, Colloids and Surfaces 348, 100–108.
  • 24. Upendra, K., 2011. Thermodynamics of the Adsorption of Cd (II) from Aqueous Solution on NCRH, International Journal of Environmental Science and Development, 2, 334–336.
  • 25. Sara, D., Tushar, K.S., 2012. Removal of Anionic Dye Congo Red from Aqueous Solution by Raw Pine and Acid-Treated Pine Cone Powder as Adsorbent: Equilibrium, Thermodynamic, Kinetics, Mechanism and Process Design, Water Research, 46, 1933–1946.
  • 26. Allen, S.J., Mckay, G., Porter, J.F., 2004. Adsorption Isotherm Models for Basic Dye Adsorption by Peat in Single and Binary Component Systems, Journal of Colloid and Interface Science, 280(2), 322-333.
  • 27.Benefield, L.D., Judkins, J.F., Weand, B.L., 1982. Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, Inc, Englewood Cliffs, New Jersey.
  • 28.Chiou, M.S., Li, H.Y., 2002. Equilibrium and Kinetic Modeling of Adsorption of Reactive Dye on Cross-linked Chitosan Beads, Journal of Hazardous Materials, 93(2), 233-24.
  • 29. Marilia, P., Doahn, F., Vicelina, B.S., 2014. Evaluation on Paper Making Potential of Nine Eucalyptus Species Based on Wood Anatomical Features, Industrial Crops and Products 54, 327–334.
  • 30. Saygili, H., Guzel, F., Onal, Y., 2015. Conversion of Grape Industrial Processing Waste to Activated Carbon Sorbent and it‟s Performance in Cationic and Anionic Dyes Adsorption, Journal of Cleaner Production, 93, 84-93.
Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi-Cover
  • ISSN: 1019-1011
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ
Sayıdaki Diğer Makaleler

Cer Makinasında Ekartman Ayarlarının İplik Kalite Özelliklerine Etkisinin İncelenmesi

BELKIS ZERVENT ÜNAL, Soner VURKIR

Bakır Konsantre Tesislerinde Kontrol Kartlarının ve Çok Boyutlu Ölçekleme Analizinin Uygulanması

Volkan ARSLAN

Plakalı Kanatçıklı Isı Değiştiricilerde Kanat Açısının Isı Transferine Olan Etkisinin Üç Boyutlu Sayısal Olarak İncelenmesi

ERTAN BUYRUK, KORAY KARABULUT

Investigation of Mechanical and Thermal Properties of Boron Minerals Doped Plastic Materials

YAKUP EMRE TANRIKULU, ABDULKADİR YAŞAR

Determination of Magnetocaloric Effect in La0.67Ba0.33MnO3 from Direct and Indirect Measurements

Selda KILIÇ ÇETİN, Ahmet EKİCİBİL

Veri Madenciliği Uygulamalarının ve Sezgisel Optimizasyon Algoritmalarının Yapım Yönetimindeki Yeri

MÜMİNE KAYA KELEŞ, ABDULLAH EMRE KELEŞ

Bastnazit Kompleks Cevherinden (Eskişehir, Türkiye) Bazı Nadir Toprak Elementlerinin (Ce, Nd, La) Asit Liçi ile Çözünürlüklerinin Araştırılması

İLGİN KURŞUN, ORHAN ÖZDEMİR, Tuğba Deniz TOMBAL, MERT TERZİ, HASAN HACIFAZLIOĞLU

İnşaat Mühendisleri Özelinde Eş Zamanlı Mühendislik Yaklaşımının İrdelenmesi

OLCAY GENÇ, ERCAN ERDİŞ, Hilmi COŞKUN

Daire Eksenli Yapı Elemanlarının Tamamlayıcı Fonksiyonlar Yöntemi ile Statik Analizi

TİMUÇİN ALP ASLAN, AHMAD RESHAD NOORI, BEYTULLAH TEMEL

Kum Zemine Gömülü Çan Tipi Ankrajların Deneysel Çalışmalar ve Sayısal Analizler ile İncelenmesi

ENVER AHMET DEMİR, BAHADIR OK, TALHA SARICI, Mahmut EROĞLU