Kum Zemine Gömülü Çan Tipi Ankrajların Deneysel Çalışmalar ve Sayısal Analizler ile İncelenmesi

Temeller genellikle basınç yüklerine maruz kalmaktadır. Fakat rüzgar yükü vb. gibi yanal yüklere maruz kalan yüksek binalar, elektrik üretmek için kullanılan rüzgar tribünleri vb. gibi yapıların temelleri çekme yüklerine maruz kalmaktadır. Bu tip yüklere maruz yapıların temelleri tasarlanırken bu çekme kuvvetinin etkisini incelemek gerekmektedir. Bu çalışmada kum zemine gömülü çan tipi ankrajların çekme kapasitesi deneysel çalışmalar ve numerik analizlerle incelenmiştir. Deneysel çalışmalarda ve sayısal analizlerde taban çapı 50, 100 ve 150 mm olan çan tipi ankrajlar kullanılmıştır. Çan tipi ankrajın eğimli yüzeyinin açısı, gömülme derinliği ve gömüldüğü kum zeminin sıkılığı gibi parametrelerin çekme kapasitesine etkisi araştırılmıştır. Ayrıca helisel ve dairesel ankrajların çekme kapasiteleri deneysel olarak bulunarak çan tipi ankrajların çekme kapasiteleri ile kıyaslanmıştır. Bu çalışmanın sonucunda görülmüştür ki, çekme kapasitesi ankraj açısının değişiminden çok fazla etkilenmemektedir ve çekme kapasitesi ankraj açısı arttıkça az bir miktar azalmaktadır. Ayrıca, çan tipi ankrajın çapı, gömülme derinliği ve gömüldüğü kumun rölatif sıkılığı arttıkça çekme kapasitesi artmaktadır

An Experimental and Numerical Investigation of Bell Type Anchor Plates Embedded in Sandy Soil

Foundations are often subjected by pressure loads. However, the foundations of structures such as highrise building, wind turbines for generating electricity etc. which is exposed to lateral loads such as wind load etc. are generally subjected to uplift loads. It is necessary to examine the effect of this uplift force when designing the foundation of such subjected loads. In this study, the uplift capacity of bell type anchors embedded in a sandy soil was investigated experimentally and numerically. Bell type anchors with base diameters of 50, 100 and 150 mm were used. The effect of the parameters such as the angle of the sloping surface and embedding depth of the bell type anchor and relative density of the sand where the anchor was buried on the uplift capacity were investigated. Also, the uplift capacities of helical and circular anchors are found experimentally and compared with the uplift capacity of the bell type anchors. As a result of this study, the uplift capacity is not significantly affected by the change of the anchor angle and the uplift capacity decreases slightly as the anchor angle increases. In addition, the uplift capacity increases as the diameter and embedding depth of the bell type anchor, relative density of the sand where the anchor was buried increases

___

  • 1. Majer, P., 1955. Zur Berechnung von zugfundamenten. Osterreichische Bauzeitgschrift (in German) 10(5):85–90.
  • 2. Balla, A., 1961. The Resistance of BreakingOut of Mushroom Foundations for Pylons, Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1, 569–576.
  • 3. Baker, W.H., Kondner, R.L., 1966. Pullout Load Capacity of Circular Earth Anchor Buried in Sand. National Academy of Sciences, Highway Research Board, Report No. 108, 1-10.
  • 4. Adams, J.I., Hayes, D.C., 1967. The Uplift Capacity of Shallow Foundations, Ontario Hydro Research Quarterly, 19(1), 1–13.
  • 5. Sutherland, H.B., Finlay, T.W., Fadl, M.O., 1982. Uplift Capacity of Embedded Anchors in Sand, In Proceedings of the 3rd International Conference on the Behaviour of Offshore Structures, Cambridge, Mass., 2, 451–463.
  • 6. Das, B. M., Jin, Y. 1987. Uplift Capacity of Model Group Anchors in Sand’, In Foundations for Transmission Towers, (ed. B. M. Das), 57– 71, New York, ASCE.
  • 7. Murray, E.J., Geddes, J.D., 1987. Uplift Behaviour of Plates in Sand. Journal of Geotechnical Engineering Division, ASCE 113 (3), 202-215.
  • 8. Subbarao C, Mukhopadhyay S, Sinha J, 1988. Geotextiles to Improve Uplift Resistance of Anchors. In: Procedings of the First Indian Geotextiles Conference on Renforced Soil and Geotextiles, Bombay, India, Balkema, Rotterdam, F3–F8.
  • 9. Dickin, E.A, Leung, C.F, 1990. Performance of Piles With Enlarged Bases Subjected to Uplift Forces. Can Geotech J 27(5), 546–556.
  • 10. Hanna, A. M, Ghaly, A. M, 1994. Ultimate Pull out Resistance of Groups of Vertical Anchors. Can Geotech J 31(5), 673–682.
  • 11.Ilamparuthi, K, Dickin, E. A, 2001. The Influence of Soil Reinforcement on the Uplift Behaviour of Belled Piles Embedded in Sand. Geotext Geomembr 19(1), 1–22.
  • 12.Ilamparuthi, K, Dickin, E. A, 2001. Prediction of the Uplift Response of Model Belled Piles in Geogrid-Cell-Reinforced Sand. Geotext Geomembr 19(1), 89–109.
  • 13. Hamza, AH, 1994. Transmission Line Tower Representation and its Effect on the Tower Surge Response Calculation. Energy Convers Manag 35(12), 1087–1096.
  • 14. Ok, B., 2014. Ankraj Plakalarınının Farklı Zemin Koşullarındaki Çekme Kapasitelerinin İncelenmesi”, Yüksek Lisans Tezi, Osmaniye Korkut Ata Üniversitesi, Fen Bilimleri Enstitüsü, Osmaniye.
  • 15. Niroumand H., Kassim K. A., Nazir R., 2010. Uplift Response of Horizontal Strip Anchor Plates in Cohesionless Soil, Electronic Journal of Geotechnical Engineering, 15, 1967-1974.
  • 16. Das, B. M., 1999. Shallow Foundations: Bearing Capacity and Settlement. CRC Press, U.S.A.
  • 17.Bera, A. K., Banerjee, U., 2013. Uplift Capacity of Model Bell Shaped Anchor Embedded in Sand. International Journal of Geotechnical Engineering, 7(1), 84-90.
  • 18.Ravichandran P. T., Ilamparuthi K., Toufeeq M. M., 2008. Investigations on Uplift Behaviour of Plate Anchor in Reinforced Sand Bed, Electronic Journal of Geotechnical Engineering, 13, 1-8.
  • 19. Dickin, E. A., Laman, M., 2007. Uplift Response of Strip Anchors in Cohesionless Soil, Advances in Engineering Software, 38 (8-9), 618-625.
  • 20. Ghaly, A. M., Hanna, A. M., Hanna, M., 1991. Uplift Behaviour of Screw Anchors in Sand, ıı: Hydrostatic and Flow Conditions, Journal of Geotechnical Engineering., ASCE, 117 (5), 794-808.
  • 21.Ilamparuthi, K, Dickin, E. A, Muthukrishnaiah K. 2002. Experimental Investigation of the Uplift Capacity of Circular Plate Anchors in Sand. Can Geotech J, 39, 648–664.
  • 22. Krishnaswamy, N. R., Parashar, S.P., 1994. Uplift behaviour of plate anchors with geosynthetics. Geotextiles and Geomembranes 13 (2), 67-89.
  • 23. Sarıcı T., Ok, B., Demir, A., Eroğlu M., An Experimental Study for Uplift Capacity of Anchor Plates Embedded in Sandy Soil, 12th International Congress on Advances in Civil Engineering-ACE 2016, İstanbul, Türkıye, 21-23 Eylül 2016, 1464, 1-9.
  • 24. ASTM D 854-14: Standard Test Methods for Specific Gravity of Soil Soils by Water Pycnometer.
  • 25. ASTM D 4253-00: Standart Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table.
  • 26. ASTM D 4254-00: Standart Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.
  • 27. ASTM C136/C136M-14 Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.
  • 28. ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
  • 29. ASTM D 3080-98: Standard Test Methods for Direct Shear Test of Soils Under Consolidated Drained Conditions.
  • 30. Merifield, R. S., 2011. Ultimate Uplift Capacity of Multiplate Helical Type Anchors in Clay, Journal of Geotechnical and Geoenvironmental Engineerıng, 137(7), 704-716.
  • 31. Mitsch, M. P. and Clemence, S. P., 1985. The Uplift Capacity of Helix Anchors in Sand. In Uplift Behavior of Anchor Foundations in Soil, ASCE, 26-47.
  • 32. Saeedy, H. S., 1987. Stability of Circular Vertical Earth Anchors. Canadian Geotechnical Journal, 24(3), 452-456.
  • 33. Vesic, A. S., 1971. Breakout Resistance of Objects Embedded in Ocean Bottom, J. Soil Mechan. Found. Eng., 97, (9), 1183–1205.