Karbon Lifi/Epoksi Tabakalı Kompozit Malzemelerin Farklı Ortam Şartlarındaki Mod I Kırılma Davranışı

Tabakalar arası çatlak ve kırılma, tabakalı kompozit malzemelerde çokça karşılaşılan bir hasar türüdür. Ayrılma modu tabakalar arası kırılmanın en kolay gerçekleştiği ve tabakalar arası kırılma tokluğunun en düşük olduğu kırılma modudur. Bu çalışmada 140oC ile -160oC aralığındaki ortam sıcaklıklarının karbon lifi/epoksi kompozit malzemenin Mod I tabakalar arası kırılma tokluğuna ve kırılma mekaniğine etkisi araştırılmıştır. Elde edilen bulgularda ortam sıcaklığı 0oC'nin altına düştüğünde tabakalar arası kırılma tokluğu, 23oC ortam sıcaklığındaki kırılma tokluğuna göre azalmıştır. Ancak düşük ortam sıcaklıklarındaki kırılma karakteristiği 23oC sıcaklıktaki kırılma karakteristiğine benzerdir. Yüksek ortam sıcaklıklarında ise matris malzemenin camsı geçiş sıcaklığı çatlak gelişimi için doğal bir limit oluşturmaktadır. Epoksi matrisin camsı geçiş sıcaklığına yakın sıcaklıklarda çatlak ilerlememiştir. Camsı geçiş sıcaklığının üzerindeki sıcaklıklarda ise malzemenin kırılma davranışı tamamen değişmiştir

Mode I Interlaminar Fracture Behaviour of Carbon/Epoxy Laminated Composites under Different Temperatures

Interlaminar fracture of a laminated composite material is the damage resistance of the material to cracks located at interface. Mode I interlaminar fracture takes place and damages composites more easily than other modes since it is frictionless. In this study, the effect of ambient temperature to mod I interlaminar fracture toughness of carbon/epoxy laminate was studied. It is found out that if the ambient temperature decreases under 0oC, Mod I interlaminar fracture toughness decreases also. However fracture behavior doesn’t change and R-curve behaviors of laminates are similar under the 23oC and below. For higher ambient temperatures than 23oC, it is concluded that glass transition temperature (Tg) of epoxy matrix is key parameter and the crack doesn’t propagate if the temperature is close to Tg. Fracture characteristics of the laminate are so different under the temperatures higher than Tg

___

  • 1. Argüelles, A., Vina, J., Canteli, A. F., Castrillo, M. A., Bonhomme, J., 2008. Interlaminar Crack Initiation and Growth Rate in a CarbonFibre Epoxy Composite under Mode-I Fatigue Loading. Composites Science and Technology, 68, 2325-2331.
  • 2. Brunner, A. J., Murphy, N., Pinter, G., 2009. Development of a Standardized Procedure for the Characterization of Interlaminar Delamination Propagation in Advanced Composites under Fatigue Mode I Loading Conditions. Engineering Fracture Mechanics(76), 2678-2689.
  • 3. O’Brien, T. K., 1998. Interlaminar Fracture Toughness: The Long and Winding Road to Standardization. Composites Part B, 29(1), 57-62.
  • 4. Kenane, M., Azari, Z., Benmedakhene, S., Benzeggagh, M. L., 2011. Experimental Development of Fatigue Delamination Threshold Criterion. Composites Part B: Engineering, 42, 367-375.
  • 5. Hojo, M., Kageyama, K., Tanaka, K., 1995. Prestandardization Study on Mode I Interlaminar Fracture Toughness Test for CFRP in Japan. Composites, 26, 243-255.
  • 6. Davies, P., Blackman, B. K., Brunner, A. J., 1998. Standard Test Methods for Delamination Resistance of Composite Materials: Current Status. Applied Composite Materials, (5), 345-364.
  • 7. JIS Standard K 7086, Testing Methods for Interlaminar Fracture Toughness of Carbon Fiber Reinforced Plastics, 1993.
  • 8. ISO International Standard 15024, Fiberreinforced Plastic Composites - Determination of Mode I Interlaminar Fracture Toughness, Gıc, Unidirectionally Reinforced Materials, 2001.
  • 9. ASTM D5528-13, 2013. Standard Test Method for Mode I Interlaminar Fractre Toughness of Unidirectional Continuous Fiber Reinforced Polymer Matrix Composites.
  • 10. Stelzer, S., Brunner, A. J., Argüelles, A., Murphy, N., Pinter, G., 2012. Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure. Composites Science and Technology (72), 1102-1107.
  • 11.Carlsson, L. A., Adams, D. F., Pipes, R. B., 2014. Experimental Characterization of Advanced Composite Materials. Boca Raton: CRC Press.
  • 12. de Moura, M. S., Campilho, R. S., Amaro, A. M., Reis, P. B., 2010. Interlaminar and Intralaminar Fracture Characterization of Composites Under Mode I Loading. Composite Structures, 92, 144-149.
  • 13. Shokrieh, M. M., Heidari-Rarani, M., 2011. Effect of Stacking Sequence on R-curve Behavior of Glass/Epoxy DCB Laminates with 0o//0o Crack Interface. Materials Science and Engineering A, 529, 265-269.
  • 14.Chou, I., 1998. Effect of Fiber Orientation and Moisture Absorption on the Interlaminar Fracture Toughness of CFRP Laminates. 7(4), 377-394. Advanced Composite Materials.
  • 15. Shetty, M. R., Vijay Kumar, K. R., Sudhir, S., Raghu, P., Madhuranath, A. D., Rao, R. M., 2000. Effect of Fibre Orientation on Mode-I Interlaminar Fracture Toughness of Glass Epoxy Composites. 19(8), 606-620.
  • 16. Mathews, M. J., Swanson, S. R., 2007. Characterization of the Interlaminar Fracture Toughness of a Laminated Carbon/Epoxy Composite. Composites Science and Technology (67), 1489-1498.
  • 17. Davidson, B. D., Krüger, R., König, M., 1996. Effect of Stacking Sequence on Energy Release Rate Distributions in Multidirectional DCB and ENF Specimens. Engineering Fracture Mechanics, 55(4), 557-569.
  • 18. de Morais, A. B., de Moura, M. F., Marques, A. T., de Castro, P. T., 2002. Mode-I Interlaminar Fracture of Carbon/Epoxy Crossply Composites. Composites Science and Technology, 62 (5), 679-686.
  • 19. de Morais, A. B., 2004. Analysis of Mode II Interlaminar Fracture of Multidirectional Laminates. (35), 51-57. Composites: Part A.
  • 20. Pereira, A. B., de Morais, A. B., 2004. Mode I Interlaminar Fracture of Carbon/epoxy Multidirectional Laminates. Composites Science and Technology, 64, 2261-2270.
  • 21. Pereira, A. M., 2004. Mode II Interlaminar Fracture of Glass/epoxy Multidirectional Laminates. (35), 265-272. Composites: Part A.
  • 22. Prombut, P., Michel, L., Lachaud, F., Barrau, J. J., 2006. Delamination of Multidirectional Composite Laminates at 0/Ply Interfaces. Engineering Fracture Mechanics, 73(16), 2427-2442.
  • 23. Sebaey, T. A., Blanco, N., Lopes, C. S., Costa, J., 2011. Numerical Investigation to Prevent Crack Jumping in Double Cantilever Beam Tests of Multidirectional Composite Laminates. Composites Science and Technology, 71(13), 1587-1592.
  • 24. Smiley, A. J., Pipes, R. B., 1987. Rate Effects on Mode I Interlaminar Fracture Toughness in Composite Materials. Journal of Composite Materials, 21(7), 670-687.
  • 25. Mall, S., Law, G. E., Katouzian, M., 1987. Loading Rate Effect on Interlaminar Fracture Toughness of a Thermoplastic Composite. Journal of Composite Materials, 21(6), 569-579.
  • 26. Kusaka, T., Hojo, M., Mai, Y.-W., Kurokawa, T., Nojima, T., Ochiai, S., 1998. Rate Dependence of Mode I Fracture Behaviour in Carbon-Fibre/Epoxy Composite Laminates. Composites Science and Technology (58), 591-602.
  • 27. Hug, G., Thevenet, P., Fitoussi, J., Baptiste, D., 2006. Effect of Loading Rate on Mode I Interlaminar Fracture Toughness of Laminated Composites. Engineering Fracture Mechanics (73), 2456-2462.
  • 28. Zabala, H., Aretxabaleta, L., Castillo, G., Aurrokoetxea, J., 2015. Loading Rate Dependency on Mode I Interlaminar Fracture Toughness of Unidirectional and Woven Carbon Fibre Epoxy Composites. Composite Structures, 121, 75-82.
  • 29. Frassine, R., Pavan, A., 1995. Viscoelastic Effects on the Interlaminar Fracture Behaviour of Thermoplastic Matrix Composites: I. Rate and Temperature Dependence in Unidirectional PEI/Carbon-Fibre Laminates. Composites Science and Technology, 54, 193-200.
  • 30. Frassine, R., Rink, M., Pavan, A., 1996. Viscoelastic Effects on the Interlaminar Fracture Behaviour of Thermoplastic Matrix Composites: II. Rate and Temperature Dependence in Unidirectional PEEK/CarbonFibre Laminates. Composites Science and Technology, 1253-1260.
  • 31.Cowley, K. D., Beaumont, P. W., 1997. The Interlaminar and Intralaminar Fracture Toughness of Carbon-Fibre/polymer Composites: The Effect of Temperature. Composite Science and Technology, 57, 1433-1444.
  • 32. Kim, H. S., Wang, W.-X., Takao, Y., 1999. Effects of Temperature and Fiber Orientation on the Mode I Interlaminar Fracture Toughness of Carbon/epoxy Composites. ICCM12 Conference, s. 276-288. Paris.
  • 33. Özarslan, H., Yavuz, H., Darıcık, F., 2016. Elektrikli Araç Uygulamaları için Kompozit Malzeme ile Hafif Şase Tasarımı ve Geliştirilmesi. International Conference on Material Science and Technology in Cappadocia (IMSTEC’16), s. 699-703. Nevşehir.