Türkiye’de Pamuk Saplarının Biyogaz ve Sentez Gazı Potansiyelinin Değerlendirilmesi

Dünya pamuk üretiminin en büyük üreticilerinden biri olan Türkiye, biyokütleyi doğrudan yakma yoluyla kullanmaktadır ve biyokütlenin elektrik üretimine katkısı %1,5’tir. Bu çalışmada, ülkenin gelecekteki biyokütle temelli uygulamalarına bir öngörü sunmak için pamuk saplarının biyogaz potansiyeli değerlendirilmiştir. Türkiye'nin Güneydoğu, Ege ve Çukurova bölgelerinde yer alan altı ilde hasat edilen pamuk sapları, biyokütlenin elektrik üretim potansiyeli ve 2019 yılı faturalı elektrik tüketimi açısından değerlendirilerek tartışılmıştır. Bu illere ait toplam pamuk sapı üretim kapasitesi 15.6 milyon ton olmakla birlikte, söz konusu biyokütlenin yıllık 3,1 milyar m3 metan gazı ve ayrıca elektrik talebinin yaklaşık %32’sini karşılayabilecek 12 TWh elektrik üretimine karşılık geldiği bulunmuştur. Güneydoğu Anadolu bölgesi için pamuk saplarının anaerobik çürütülmesiyle (9 milyon ton/yıl) bölgenin elektrik tüketiminin %99,5’inin karşılanabileceği tespit edilmiştir. Pamuk saplarının metan potansiyelleri, karşılık gelen sentez gazı verimleri ile karşılaştırılmış ve sentez gazı için daha düşük yüzdeler elde edilmiştir. Bu çalışmada enerji stratejisi olarak önerilen tarımsal kalıntıların anaerobik çürütülmesi ve termokimyasal dönüşümü, Türkiye'de biyoenerji üretimine yönelik faaliyetlerin hızlandırılmasına yardımcı olacaktır.

Assessment of Biogas and Syngas Potentials of Cotton Stalks in Turkey

Turkey, being one of the largest producers of world cotton production, utilizes biomass through direct incineration for electricity generation which accounts for 1.5% of the total electricity generation in Turkey. In this work, biogas potential of cotton stalks was assessed to present a foresight to the future biomass valorizations in the country. Cotton stalks harvested in six cities located in the Southeastern, Aegean and Çukurova regions of Turkey were evaluated and discussed with respect to their potential in electricity generation and the invoiced electricity consumption in 2019. These cities were found to yield 15.6 million tonnes of cotton stalks with an annual 3.1 billion m3 of methane and also, 12 TWh of electricity generation that could meet almost 32% of the electricity demand. For Southeastern region, region’s electricity consumption could be met by 99.5% with the anaerobic digestion of cotton stalks (9 million tonnes/yr). Methane potentials of cotton stalks were compared with the corresponding syngas yields and lower percentages were obtained for syngas. Anaerobic digestion and thermochemical conversion of agricultural residues, being proposed as energy strategies in this study, could help to accelerate the activities on bioenergy share in Turkey.

___

  • 1. Bhatia, R.K., Ramadoss, G., Jain A.K., Dhiman, R.K., Bhatia, S.K., Bhatt, A.K., 2020. Conversion of Waste Biomass into Gaseous Fuel: Present Status and Challenges in India, BioEnergy Research 13(4), 1046–1068.
  • 2. World Health Organization (WHO), 2018. Household air Pollution and Health, https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health, Erişim Tarihi: 13.4.2021.
  • 3. International Energy Agency (IEA), 2020. Global CO2 emissions in 2019, https://www.iea.org/articles/global-co2-emissions-in-2019, Erişim Tarihi: 13.4.2021.
  • 4. International Energy Agency (IEA), 2020. Electricity Information: Overview, https://www.iea.org/reports/electricity-information-overview, Erişim Tarihi: 13.4.2021
  • 5. International Energy Agency (IEA), 2018. Total primary energy supply in Europe, https://www.iea.org/regions/europe, Erişim Tarihi: 13.4.2021.
  • 6. European Biogas Association (EBA), 2019. EBA Statistical Report 2019, https://www.europeanbiogas.eu/eba-statistical-report-2019/, Erişim Tarihi: 13.4.2021
  • 7. Energy Market Regulatory Authority, 2018. Electricity market development report 2019, http://epdk.gov.tr/Detay/Icerik/3-0-0-102/yillik-rapor-elektrik-piyasasi-gelisim-raporlari, Erişim Tarihi: 13.4.2021.
  • 8. Avcioğlu, A., Onurbaş, Türker, U., 2012. Status and Potential of Biogas Energy from Animal Wastes in Turkey. Renewable and Sustainable Energy Reviews 16(3), 1557–1561.
  • 9. Lansche, J., Müller, J., 2012. Life Cycle Assessment of Energy Generation of Biogas Fed Combined Heat and Power Plants: Environmental Impact of Different Agricultural Substrates. Engineering in Life Sciences, 12(3), 313–320.
  • 10. National Renewable Energy Action Plan (REAP) for Turkey, 2016, https://rise.esmap.org/data/files/library/turkey/EE%20Pillar/EE1.1.pdf, Erişim Tarihi: 13.4.2021
  • 11. BEFS Assessment for Turkey. 2016, Sustainable Bioenergy Options from Crop and Livestock Residues, http://www.fao.org/3/i6480e/i6480e.pdf, Erişim Tarihi: 13.4.2021
  • 12. Maiti, R., Kalam, A., Huda, S., Mandal, D., Arunakumari, C., Begum, S., 2020. Advances in Cotton Science Botany. Production, and Crop Improvement, CRC Press.
  • 13. Bange, M., Baker J.T., Bauer P.J., Broughton, K.J., Constable, G.A., Luo, Q., Oosterhuis, D.M., Osanai, Y., Payton, P., Tissue, D.T., Reddy, K.R., Singh, B.K., 2016. Climate Change and Cotton Production in Modern Farming Systems. ICAC Review Articles on Cotton Production Research No. 6.
  • 14. Ministry of Agriculture and Forestry of Turkey, 2019, Dünyada Pamuk, https://www. tarimorman.gov.tr/BUGEM/Belgeler/MİLLİ%20TARIM/PAMUK%20ARALIK%20BÜLTENİ.pdf, Erişim Tarihi: 13.4.2021
  • 15. National Cotton Council (UPK) 2020, 2019 Yılı Pamuk Raporu, http://www.upk.org.tr/ User_Files/editor/file/2019%20Pamuk%20Raporu.pdf, Erişim Tarihi: 13.4.2021
  • 16. National Cotton Council (UPK) 2020, Turkey Country Report, http://www.upk.org.tr/ User_Files/editor/file/Turkey%20Country%20Report-2019.pdf, Erişim Tarihi: 13.4.2021
  • 17. Demirbas, A., Pehlivan, E., Altun, T., 2006. Potential Evolution of Turkish Agricultural Residues as Bio-gas, Bio-char and Bio-oil Sources. International Journal of Hydrogen Energy, 31(5), 613–620.
  • 18. Demirbas, A., Taylan, O., Kaya, D., 2016. Biogas Production from Municipal Sewage Sludge (MSS). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(20), 3027–3033.
  • 19. Molino, A., Nanna, F., Ding, Y., Bikson, B., Braccio, G., 2013. Biomethane Production by Anaerobic Digestion of Organic Waste. Fuel, 103, 1003–1009.
  • 20. Patinvoh, R.J., Osadolor, O.A., Chandolias, K., Horváth, I.S., Taherzadeh, M.J., 2017. Innovative Pretreatment Strategies for Biogas Production. Bioresource Technology, 224, 13–24.
  • 21. Hu, G., Heitmann, J., Rojas, O., 2008. Feedstock Pretreatment Strategies for Producing Ethanol from Wood, Bark, and Forest Residues. BioResources, 3(1), 270-294.
  • 22. Taherzadeh, M.J., Karimi, K., 2008. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 9(9), 1621–1651.
  • 23. Karimi, K., Taherzadeh, M.J., 2016. A Critical Review on Analysis in Pretreatment of Lignocelluloses: Degree of Polymerization, Adsorption/Desorption, and Accessibility. Bioresource Technology, 203, 348–356.
  • 24. Chang, V.S., Holtzapple, M.T., 2000. Fundamental Factors Affecting Biomass Enzymatic Reactivity. Applied Biochemistry and Biotechnology, 84–86(1–9), 5–37.
  • 25. Patinvoh, R.J., Osadolor, O.A., Chandolias, K., Horváth, I.S., Taherzadeh, M.J., 2017. Innovative Pretreatment Strategies for Biogas Production. Bioresource Technology, 224, 13–24.
  • 26. Amnuaycheewa, P., Hengaroonprasan, R., Rattanaporn, K., Kirdponpattara, S., Cheenkachorn, K., Sriariyanun, M., 2016. Enhancing Enzymatic Hydrolysis and Biogas Production from Rice Straw by Pretreatment with Organic Acids. Industrial Crops and Products, 87, 247–254.
  • 27. Mirahmadi, K., Kabir, M., Jeihanipour, A., Karimi, K., Taherzadeh, M., 2010. Alkaline Pretreatment of Spruce and Birch to Improve Bioethanol and Biogas Production, Bioresources, 5, 928-938.
  • 28. Gao, J., Chen, L., Ke Yuan, Huang, H., Yan, Zo., 2013. Ionic Liquid Pretreatment to Enhance the Anaerobic Digestion of Lignocellulosic Biomass. Bioresource Technology, 150, 352–358.
  • 29. Frigon, J.C., Mehta, P., Guiot, S., 2012. Impact of Mechanical, Chemical and Enzymatic Pre-Treatments on the Methane Yield from the Anaerobic Digestion of Switchgrass. Biomass and Bioenergy, 36, 1–11.
  • 30. YunYan, M., WanLi, X., GuangMu, T., MeiYing, G., QuanHong, X., 2017. Effect of Cotton Stalk Biochar Application on Soil Microflora of Continuous Cotton Cropping Under Use of Antagonistic Actinomycetes. Chinese Journal of Eco-Agriculture, 25(3), 400-409.
  • 31. El Saeidy, E., 2004. Technological Fundamentals of Briquetting Cotton Stalks as a Biofuel, Doctoral Dissertation. Humboldt Universität zu Berlin, Landwirtschaftlich-Gärtnerische Fakultät.
  • 32. Reddy, N., Yang, Y., 2009. Properties and Potential Applications of Natural Cellulose Fibers from the Bark of Cotton Stalks. Bioresource Technology, 100(14), 3563–3569.
  • 33. Haykir, N.I., Bakir, U., 2013. Ionic Liquid Pretreatment Allows Utilization of High Substrate Loadings in Enzymatic Hydrolysis of Biomass to Produce Ethanol from Cotton Stalks. Industrial Crops and Products, 51, 408–414.
  • 34. Semerci, I., Guler, F., 2018. Protic Ionic Liquids as Effective Agents for Pretreatment of Cotton Stalks at High Biomass Loading. Industrial Crops and Products, 125, 588-595.
  • 35. Wu, M., Jia-Kun, L., Zhong-Ya, Y., Bo, W., Xue-Ming, Z., Feng, X., Run-Cang, S., 2016. Efficient Recovery and Structural Characterization of Lignin from Cotton Stalks Based on a
  • 36. Kantarelis, E., Zabaniotou, A., 2009. Valorization of Cotton Stalks by Fast Pyrolysis and Fixed Bed Air Gasification for Syngas Production as Precursor of Second Generation Biofuels and Sustainable Agriculture. Bioresource Technology, 100(2), 942–947.
  • 37. Keshav, P.K., Shaik, N., Koti, S., Linga, V.R., 2016. Bioconversion of Alkali Delignified Cotton Stalks Using Two-stage Dilute Acid Hydrolysis and Fermentation of Detoxified Hydrolysate into Ethanol. Industrial Crops and Products, 91, 323–331.
  • 38. Wang, M., Zhou, D., Wang, Y., Wei, S., Yang, W., Kuang, M., Ma, L., Fang, D., Xu, S., Du S., 2016. Bioethanol Production from Cotton Stalk: A Comparative Study of Various Pretreatments. Fuel, 184, 527–532.
  • 39. Li, Q., Yang, M., Wang, D., Li, W., Wu Y., Zhang, Y., Xing, J., Su, Z., 2010. Efficient Conversion of Crop Stalk Wastes into Succinic Acid Production by Actinobacillus Succinogenes. Bioresource Technology, 101(9), 3292–3294.
  • 40. Zheng, J., Yi, W., Wang, N., 2008. Bio-Oil Production from Cotton Stalk. Energy Conversion and Management, 49(6), 1724–1730. 41. Rincon, L., Puri, M., Kojakovic, A., Maltsoglou, I., 2019. The Contribution of Sustainable Bioenergy to Renewable Electricity Generation in Turkey: Evidence Based Policy from an Integrated Energy and Agriculture Approach. Energy Policy, 130, 69–88.
  • 42. Zhang, H., Khalid, H., Wanwu, Li, He, H., Liu, G., Chen, C., 2018. Employing Response Surface Methodology (RSM) to Improve Methane Production from Cotton Stalk. Environmental Science and Pollution Research, 25(8), 7618–7624.
  • 43. Yuan, X., Ma, L., Wen, B., Zhou, D., Kuang, M., Yang, W., Cui, Z., 2016. Enhancing Anaerobic Digestion of Cotton Stalks by Pretreatment with a Microbial Consortium (MC1). Bioresource Technology, 207, 293–301.
  • 44. Mehrdad, A., Sheng, K., Gharibi, A., 2012. Technical Assessment of Bioenergy Recovery from Cotton Stalks Through Anaerobic Digestion Process and the Effects of Inexpensive Pre-Treatments. Applied Energy, 93, 251–260.
  • 45. Cheng, Xi-Yu, Zhong, C., 2014. Effects of Feed to Inoculum Ratio, Co-Digestion, and Pretreatment on Biogas Production from Anaerobic Digestion of Cotton Stalk. Energy & Fuels, 28(5), 3157–3166.
  • 46. Alafif, R., Wendland, M., Amon, T., Pfeifer, C., 2020. Supercritical Carbon Dioxide Enhanced Pre-treatment of Cotton Stalks for Methane Production. Energy, 194, 116903.
  • 47. Zhang, H., Ning, Z., Khalid, H., Zhang, R., Liu, G., Chen C., 2018. Enhancement of Methane Production from Cotton stalks Using Different Pretreatment Techniques. Scientific Reports, 8(1), 3463.
  • 48. Ghasemian, M., Zilouei, H., Asadinezhad, A., 2016. Enhanced Biogas and Biohydrogen Production from Cotton Plant Wastes Using Alkaline Pretreatment. Energy & Fuels, 30(12), 10484–10493.
  • 49. Sluiter, A., Hames, B., Ruiz, R.O., Scarlata, C., Sluiter, J., Templeton, D., 2008a. Determination of Ash in Biomass. Natl. Renew. Energy Lab. 1-6.
  • 50. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., 2008b. Determination of Extractives in Biomass. NREL TP-510-42619. Laboratory Analytical Procedure (LAP).
  • 51. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2008c. Determination of Structural Carbohydrates and Lignin in Biomass. in: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory.
  • 52. Buswell, A.M., 1957. Fundamentals of Anaerobic Treatment of Organic Wastes. Sewage and Industrial Wastes, 29(6), 717–721.
  • 53. Demirbaş, A., 1997. Calculation of Higher Heating Values of Biomass Fuels. Fuel, 76(5), 431–434.
  • 54. Kanca, A., 2020. Investigation on Pyrolysis and Combustion Characteristics of Low Quality Lignite. Cotton Waste, and Their Blends by TGA-FTIR, Fuel 263: 116517.
  • 55. Şenol, H., Zenk, H., 2020. Determination of the Biogas Potential in Cities with Hazelnut Production and Examination of Potential Energy Savings in Turkey. Fuel, 270, 117577.
  • 56. Yalcinkaya, S., 2020. A Spatial Modeling Approach for Siting, Sizing and Economic Assessment of Centralized Biogas Plants in Organic Waste Management. Journal of Cleaner Production, 255, 120040.
  • 57. Hamawand, I., Gary, S., Pam, P., Sayan, C., Talal, Y., Guangnan, C., Saman, S., Saddam, A.L., John, B., Joshua, H., 2016. Bioenergy from Cotton Industry Wastes: A Review and Potential. Renewable and Sustainable Energy Reviews, 66, 435–448.
  • 58. Danish, M., Naqvi, M., Farooq, U., Naqvi, S., 2015. Characterization of South Asian Agricultural Residues for Potential Utilization in Future ‘Energy Mix’. Energy Procedia, 75, 2974–2980.
  • 59. Afif, R.Al., Pfeifer, C., Pröll, T., 2020. Advances in Cotton Research.
  • 60. Peng, W.X., Wang, L.S., Mirzaee, M., Ahmadi, H., Esfahani, M.J., Fremaux, S., 2017. Hydrogen and Syngas Production by Catalytic Biomass Gasification. Energy Conversion and Management, 135, 270–273.
  • 61. Wang, L., Weller, C.L., Jones, D.D., Hanna, M.A., 2008. Contemporary Issues in Thermal Gasification of Biomass and its Application to Electricity and Fuel Production. Biomass and Bioenergy, 32(7), 573–581.
  • 62. Karatas, H., Olgun, H., Akgun, F., 2013. Experimental Results of Gasification of Cotton Stalks and Hazelnut Shell in a Bubbling Fluidized Bed Gasifier under Air and Steam Atmospheres. Fuel, 112, 494–501.
  • 63. Gañan, J., Al-Kassir, A., Miranda, A.B., Turegano, J., Correia, S., Cuerda, E.M., 2005. Energy Production by Means of Gasification Process of Residuals Sourced in Extremadura (Spain). Renewable Energy, 30(11), 1759–1769.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ