Sanayide Enerji Verimliliğini Arttırıcı Enerji Yönetimi Uygulamaları: Fırın, Kazan HVAC ve Soğutma Sistemlerinde

Bu çalışmanın amacı, endüstrilerde enerji verimliliğini artırmaya yönelik enerji yönetimi uygulamalarını göstermek ve analiz etmektir. Çalışmada, endüstriyel kuruluşlarda gerçekleştirilebilecek enerji verimliliği artırıcı uygulamalarının örnekleri ele alınmış, bu uygulamalar için tasarruf miktarı hesaplanmıştır. Çalışmada ele alınan başlıca enerji verimliliği uygulamaları: kazanlarda ve fırınlarda ısı geri kazanımı, ısı yalıtımı ve HVAC sistemlerinde ısı geri kazanımıdır. Bu çalışmanın sonucunda enerji yönetimi ve enerji verimliliği uygulamaları ile fırınlarda reküperatör kullanıldığında %38,2 oranında ısı geri kazanımı, %15,79 oranında yakıt tasarrufu sağlanmıştır. Reküperatör kullanılmadığında kazan ısıl verimi %64,46 iken, reküperatör kullanıldığında kazan ısıl verimi %76,54 ‘e yükselmiştir. HVAC sistemlerinde reküperatör ile %47 verimle, ısı değiştiricisi %51 verimle ve ısı pompasında 1,09 COP ile ısı geri kazanımı sağlanmıştır. Soğutma uygulamalarında, yalıtımlı odada %30,4 enerji tasarrufu sağlanmıştır.

Energy Management Practices for Improving Energy Efficiency in Industries: Furnace, Steam Boiler, HVAC, and Cooling Systems

The aim of this study is to demonstrate and analyse energy management practices to increase energy efficiency in industries. In the study, examples of energy efficiency increasing applications that can be carried out in industrial organizations were discussed and the amount of savings for these applications was calculated. The main energy efficiency applications discussed in the study are the heat recovery in boilers and furnaces, thermal insulation, and heat recovery in HVAC systems. As a result of this study, with energy management and energy efficiency applications, 38.2% of heat recovery and 15.79% of fuel savings were achieved when recuperators were used in the furnace. While the boiler thermal efficiency was 64.46% when the recuperator was not used, the boiler thermal efficiency increased to 76.54% when the recuperator was used. In HVAC systems, heat recovery was achieved with 47% efficiency with the recuperator, heat exchanger with 51% efficiency and 1.09 COP in heat pump. In cooling applications, 30.4 % energy saving was achieved in the insulated room.

___

  • ⦁ AEO., 2018. Annual Energy Outlook 2018 with Projections to 2050. https://www.eia.gov/outlooks/aeo/pdf/AEO201 8.pdf, 2018.
  • ⦁ Lee, S., Teng, M., Fan, K., Yang, K., Horng, R. S., 2011. Application of an Energy Management System in Combination with FMCS to High Energy Consuming IT Industries of Taiwan. Energy Conversion and Management, 52, 3060-3070. https:// doi.org/10.1016/j.enconman.2010.12.031
  • ⦁ Hyman, B., Ozalp, N., Varbanov, P.S., Van, Fan, Y., 2019. Modelling Energy Flows in Industry: General Methodology to Develop Process Step Models. Energy Conversion and Management, 181, 528-543.
  • ⦁ EML, Energy Management Lecture, “Republic of Turkey Ministry of Energy and Natural Resources.
  • ⦁ Hirst, E., Brown, M., 2021. Closing the Efficiency Gap: Barriers to the Efficient Use of Energy. Resour. Conserv. Recycl., 3 (4), 267-281.
  • ⦁ Bunse, K., Vodicka, M., Schonsleben, P., Brülhart, M., Ernst, F.O., 2011. Integrating € Energy Efficiency Performance in Production Management E Gap Analysis between Industrial Needs and Scientific Literature. J. Clean. Prod., 19, 667-679. http://doi:10.1016/ j.jclepro.2010.11.011.
  • ⦁ France and the Institute for Industrial Productivity, 2012. IEA- International Energy Agency, Energy Management Programmes for Industry. OECD/IEA, Paris, Washington, USA.
  • ⦁ IEA/OECD, 2018. IEA – International Energy Agency, Energy Efficiency, Analysis and Outlooks to 2040, Market Report Series.
  • ⦁ Thollander, P., Palm, J., 2015. Industrial Energy Management Decision Making for Improved Energy Efficiency E Strategic System Perspectives and Situated Action in Combination. Energies, 8, 5694-5703. https://doi.org/10.3390/en8065694.
  • ⦁ Schulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy Management in Industry E a Systematic Review of Previous Findings and an Integrative Conceptual Framework. J. Clean. Prod., 112, 3692-3708. https://doi.org/10.1016/ j. jclepro.2015.06.060.
  • ⦁ Cagno, E, Worrell, E, Trianni, A, Pugliese, G., 2013. A Novel Approach for Barriers to Industrial Energy Efficiency. Renew Sustain Energy Rev., 19, 290-308.
  • ⦁ Zhang, S., Worrell, E., Crijns-Graus, W., 2015. Evaluating Co-Benefits of Energy Efficiency and Air Pollution Abatement in China’s Cement Industry. Appl Energy, 147, 192-213.
  • ⦁ Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch, J., 2009. Industrial Energy Efficiency and Climate Change Mitigation. Energy Eff., 2, 109–123.
  • ⦁ Tesema, G., Worrell, E., 2015. Energy Efficiency Improvement Potentials for the Cement Industry in Ethiopia. Energy, 93, 2042-2052.
  • ⦁ Hasanbeigi, A., Menke, C., Therdyothin, A., 2011. Technical and Cost Assessment of Energy Efficiency Improvement and Greenhouse Gas Emission Reduction Potentials in Thai Cement Industry. Energy Efficiency, 4, 93-113.
  • ⦁ Ates, S.A., Durakbasa, N.M., 2012. Evaluation of Corporate Energy Management Practices of Energy Intensive Industries in Turkey. Energy, 45, 81-91.
  • ⦁ Hossain, S.R., Ahmed, I., Ferdous, S., Azad, A.S.M., Hasan, M., 2020. Empirical Investigation of Energy Management Practices in Cement Industries of Bangladesh. Energy, 212, 118741.
  • ⦁ Andersson, E., Thollander, P., 2019. Key Performance Indicators for Energy Management in the Swedish Pulp and Paper Industry. Energy Strategy Reviews, 24, 229-235.
  • ⦁ Andrews, R., Johnson, E., 2016. Energy Use, Behavioural Change, and Business Organizations: Reviewing Recent Findings and Proposing a Future Research Agenda. Energy Res. Social Sci., 11, 195-208. https://doi.org/10.1016/j.erss.2015.09.001.
  • ⦁ Cheng, H., Hu, X., Zhou, R., 2019. How Firms Select Environmental Behaviours in China: The Framework of Environmental Motivations and Performance. J. Clean. Off. Prod., 208(20), 132- 141. https://doi.org/10.1016/j.jclepro.2018.09.096.
  • ⦁ Tiller, S.R., 2012. Organizational Structure and Management Systems. Leadersh. Manag. Eng., 2 (1), 20-23.
  • ⦁ Sola, A.V.H., Mota, C.M.M., 2020. Influencing Factors on Energy Management in Industries. Journal of Cleaner Production, 248, 119263.
  • ⦁ Martin, R., Muûls, M., de Preux, L.B., Wagner, U.J., 2012. Anatomy of a Paradox: Management Practices, Organizational Structure, and Energy Efficiency. Environ. Econ. Manag., 63, 208-223.https://doi.org/10.1016/j.jeem.2011.08.003.
  • ⦁ Neves, F.O., Salgado, E.G., Beijo, L.A., 2017. Analysis of the Environmental Management System Based on ISO 14001 on the American Continent. J. Environ. Manag., 199, 251-262. ⦁ https://doi.org/10.1016/j.jenvman.2017.05.049.
  • ⦁ Marimon, F., Casadesús, M., 2017. Reasons to Adopt ISO 50001 Energy Management System. Sustain. Times, 9, 1740. https://doi.org/10.3390/su9101740.
  • ⦁ Lozano, F.J., Lozano, R., Freire, P., Jimenez- Gonzalez, C., Sakao, T., Ortiz, M.G., 2018. New Perspectives for Green and Sustainable Chemistry and Engineering: Approaches from Sustainable Resource and Energy Use, Management, and Transformation. J Clean Prod., 172, 227.