Kanaldaki Jet Akış Sayısına Bağlı Olarak Farklı Model Yüzeylerinden Olan Isı Transferi ve Akış Yapısının Analizi

Çalışmada, Dh jet giriş genişlikli kanallardaki düz ve üçgen basamak modelli yüzeylerden olan ısı transferi üç adet hava jeti akışı kullanılarak araştırılmıştır. Araştırmalar, sayısal olarak sürekli ve üç boyutlu k-ε türbülans modeli kullanılarak Ansys-Fluent bilgisayar programıyla gerçekleştirilmiştir. Kanal yüzeyleri adyabatik olup yalnızca model yüzeylerinde sabit ısı akısı bulunmaktadır. Çalışmanın sonuçları literatürde bulunan çalışmanın sayısal ve deneysel çıktılarıyla karşılaştırılmış ve uyumlu oldukları belirlenmiştir. Sonuçlar, her bir model yüzeyi için ortalama Nu sayısı ve yüzey sıcaklığının değişimi olarak verilmiştir. Farklı Re sayıları ve H/Dh oranlarında model yüzeyleri için kanal boyunca jet akışın hız-akım ve sıcaklık konturu dağılımları değerlendirilmiştir. Re=10000 için H/Dh=3’de düz basamak desenli model yüzeyinin Nuo sayısının, üçgen basamaklı yüzeyden %45,18 daha yüksek olduğu belirlenmiştir.

Analysis of Heat Transfer and Flow Structure from Distinct Model Facets Depending on the Number of Jet Flows in Channel

In study, heat transfer from flat and triangular step pattern facets in channels with Dh jet inlet width was investigated using three air jet streams. The studies were carried out with the Ansys-Fluent computer program using the numerical time-independent and three-dimensional k-ε turbulence model. The channel facets are adiabatic and only the model facets have a constant heat flux. The outcomes of the work were matched with the scalar and empiric outcomes of the work in the litterateur, and it was achieved that they are comparable. The outcomes are performed as the mean Nu number and diversity of facet temperature for each model facet. Velocity-flow and temperature contour dispersions of the jet flow throughout the duct were commented for the model facets with distinct Re numbers and H/Dh ratios. It was interpreted that the Nuo number of the flat step patterned model facet at H/Dh=3 for Re=10000 is 45.18% higher than the triangular step facet.

___

  • ⦁ Narumanchi, S.V.J., Amon, C.H., Murthy, J.Y., 2003. Influence of Pulsating Submerged Liquid Jets on Chip-Level Thermal Phenomena, Journal of Electronic Packaging, 125 (3), 354-361.
  • ⦁ Kercher, D.S., Lee, J.B., Brand, O., Allen, M.G., Glezer, A., 2003. Microjet Cooling Devices for Thermal Management of Electronic, IEEE Transactions on Components and Packaging Technologies, 26(2), 359-366.
  • ⦁ Babic, D., Murray, D.B., Torrance, A.A., 2005. Mist Jet Cooling of Grinding Processes, International Journal of Machine Tools and Manufacture, 45, 1171-1177.
  • ⦁ Arguis, E., Rady, M.A., Nada, S.A., 2007. A Numerical Investigation and Parametric Study of Cooling An Array of Multiple Protruding Heat Sources by A Laminar Slot Air Jet, International Journal of Heat and Mass Transfer, 28, 787-805.
  • ⦁ Karabulut, K., Alnak, D.E., 2020. Değişik Şekilde Tasarlanan Isıtılmış Yüzeylerin Hava Jeti Çarpmalı Soğutulmasının Araştırılması, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26 (1), 88-98.
  • ⦁ Karabulut, K., Alnak, D.E., 2021. Dikdörtgen Bir Kanaldaki Farklı Desenli Yüzey Geometrilerinin Isı Transferine Olan Etkilerinin İncelenmesi, Tesisat Mühendisliği, 183, 37-49.
  • ⦁ Zou, L., Ning, L., Wang, X., Li, Z., He, L., Ll, H., 2022. Evaluation of Interfacial Heat Transfer Coefficient Based on the Experiment and Numerical Simulation in the Air‑Cooling Process, Heat and Mass Transfer, 58, 337-354.
  • ⦁ Barbosa, F.V., Teixeira, S.F.C.F., Teixeira, J.C.F., 2023. Convection from Multiple Air Jet Impingement- A Review, Applied Thermal Engineering, 218, 119307.
  • ⦁ Belarbi, A.A., Beriache, M., Bettahar, A., 2018. Experimental Study of Aero-Thermal Heat Sink Performances Subjected to Impinging Air Flow, International Journal of Heat and Technology, 36(4), 1310-1317.
  • ⦁ Radmard, V., Hadad, Y., Rangarajan, S., Hoang, C.H., Fallahtafti, N., Arvin, C.L., Sikka, K., Schiffres, S.N., Sammakia, B.G., 2021. Multi-Objective Optimization of A Chip-Attached Micro Pin Fin Liquid Cooling System, Applied Thermal Engineering, 195, 117187.
  • ⦁ Rathore, S.S., Verma, S.K., 2022. Numerical Investigation on the Efficacy of Jet Obliquity for Fluid Flow and Thermal Characteristics of Turbulent Offset Jet, Heat and Mass Transfer, 58, 1223-1246.
  • ⦁ Karabulut, K., 2019. Heat Transfer Improvement Study of Electronic Component Surfaces Using Air Jet Impingement, Journal of Computational Electronics, 18, 1259-1271.
  • ⦁ Mushatat, K.S., 2007. Analysis of the Turbulent Flow and Heat Transfer of the Impingement Cooling in A Channel with Cross Flow, Engineering Science, 18(2), 101-122.
  • ⦁ Koca F., Güder T.B. 2022 Numerical Investigation of CPU Cooling with Micro-Pin-Fin Heat Sink in Different Shapes, European Physical Journal Plus, 137(11), 1276.
  • ⦁ Wang, S.J., Mujumdar, A.S., 2005. A Comparative Study of Five Low Reynolds Number k–ε Models for Impingement Heat Transfer. Applied Thermal Engineering, 25, 31-44.
  • ⦁ Saleha, N., Fadela, N., Abbes, A., 2015. Improving Cooling Effectiveness by Use Chamfers on the Top of Electronic Components, Microelectronics Reliability, 55, 1067-1076.
  • ⦁ Kılıç, M., Çalışır, T., Başkaya, Ş., 2017. Experimental and Numerical Study of Heat transfer from A Heated Flat Plate in A Rectangular Channel with an Impinging Air Jet, Journal of Brazilian Society of Mechanical Sciences and Engineering, 39(1), 329-344.