Atmosferik Afetlerin Sentinel-2 ile İncelenmesi: Antalya İli 13.11.2017 Hortum Olayı ve Uzaktan Algılama Yaklaşımı ile Hasar Tespiti

Bu çalışmada, Antalya İli sınırları içerisinde tarımsal alanlarda 13.11.2017 tarihli hortum olayından dolayı oluşan hasarların Sentinel-2 verisiyle değerlendirilmesi yapılarak uydu tabanlı uzaktan algılama yaklaşımının afet yönetiminde kullanılabilirliği ve sağladığı katkılar irdelenmektedir. Çalışmada, Spektral Açı Farkı (Spectral Angle Difference) yöntemi kullanılmıştır. Çalışmada, hortum olayı öncesi 11.11.2017 ve olay sonrası 21.11.2017 tarihli görüntüler arasında değişim analizi yapılarak, Kumluca İlçesinde, hortumdan kısmen veya tamamen etkilenen 68 adet parsel ve 49.75 ha toplam tarımsal alan bulunduğu belirlenmiştir. Su hortumunun karaya çıktıktan sonra izlediği yörünge başarılı biçimde belirlenmiştir.

Investigation of Atmospheric Disasters with Sentinel-2: Antalya Province 13.11.2017 Waterspout Event and Damage Estimation by Remote Sensing

In this study, the usability of the satellite-based remote sensing approach in disaster management and its contributions are examined by evaluating the damages caused by the waterspout event on 13.11.2017 in agricultural areas within the borders of Antalya Province by using Sentinel-2 data. In the study, the Spectral Angle Difference method was used. In this study, it was determined that there are 68 parcels and a total agricultural area of 49.75 ha in Kumluca District that were partially or completely affected by the waterspout by analyzing the changes between the images dated 11.11.2017 before the waterspout and 21.11.2017 after the event, The path of waterspout after the landfall was determined succesfully.

___

  • ⦁ Rahman, M.S., Di, L., Esraz-Ul-Zannat, M., 2017. The Role of Big Data in Disaster Management, Proceedings, International Conference on Disaster Risk Mitigation, Dhaka, Bangladesh, September 23-24, 2017.
  • ⦁ Anılan, T., Durmuş, H., Akçalı, E., Yüksek, Ö., 2021. Taşkın Farkındalık ve Erken Uyarı Sistemleri Değerlendirmesi: Trabzon Beşikdüzü Örneği, Doğ Afet Çev Derg, 7(1), 110-123, DOI: 10.21324/dacd.722798.
  • ⦁ Özşahin, E., 2013. Türkiye’de Yaşanmış (1970-2012) Doğal Afetler Üzerine Bir Değerlendirme, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 25-27 Eylül 2013, MKÜ, Hatay.
  • ⦁ Carbajal, N., León-Cruz, J.F., Pineda-Martínez, L.F., Tuxpan-Vargas, J., Gaviño-Rodríguez, J.H., 2019. Occurrence of Anticyclonic Tornadoes in a Topographically Complex Region of Mexico, Advances in Meteorology, Volume 2019, Article ID 2763153, 11.
  • ⦁ Lekoloane, L.E., Bopape, M.M., Rambuwani, T.G., Ndarana, T., Landman, S., Mofokeng, P., Gijben, M., Mohale, N., 2021. A Dynamic and Thermodynamic Analysis of the 11 December 2017 Tornadic Supercell in the Highveld of South Africa, Weather Clim. Dynam., 2, 373–393, 2021.
  • ⦁ Van Westen, C., 2000. Remote Sensing for Natural Disaster Management, International Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B7. Amsterdam 2000.
  • ⦁ Avotniece, Z., Briede, A., Klavins, M., Aniskevich, S., 2017. Remote Sensing Observations of Thunderstorm Features in Latvia, Environmental and Climate Technologies, Dec. 2017, 21, 28–46, doi: 10.1515/rtuect-2017-0014.
  • ⦁ Womble, J.A., Wood, R.L., Mohammadi, M.E., 2018. Multi-Scale Remote Sensing of Tornado Effects, Front. Built Environ. 4, 66, doi: 10.3389/fbuil.2018.00066.
  • ⦁ Jiménez-Jiménez, S.I., Ojeda-Bustamante, W., Ontiveros-Capurata, R.E, de Jesús Marcial-Pablo, M., 2020. Rapid Urban Flood Damage Assessment Using High Resolution Remote Sensing Data and An Object- based Approach, Geomatics, Natural Hazards and Risk, 11(1), 906-927, Doi: 10.1080/19475705.2020.1760360.
  • ⦁ Koshimura, S., Kayaba, S., Matsuoka, M., 2010. Integrated Approach to Assess the Impact of Tsunami Disaster, Safety, Reliability and Risk of Structures, Infrastructures and Engineering Systems–Furuta, Frangopol & Shinozuka (eds), 2010 Taylor & Francis Group, London, ISBN 978-0-415-47557-0.
  • ⦁ Roopa, V., 2012. Remote Sensing & its Applications in Disaster Management Like Earthquake and Tsunamis, International Journal of Science and Research (IJSR), ISSN (Online): 2319-7064.
  • ⦁ Pandiammal, C., Senthil, J., Anand, P.H., 2015. Tsunami Flood Damages Assessment in Cuddalore District using Remote Sensing Technology, Advances in Applied Science Research, 2015, 6(8), 96-100.
  • ⦁ Gaikwad, S.V., Kale, K.V., Kulkarni, S.B., Varpe, A.B., Pathare, G.N., 2015. Agricultural Drought Severity Assessment using Remotely Sensed Data: A Review, International Journal of Advanced Remote Sensing and GIS, 2015, 4(1), 1195-1203, Article ID Tech-440.
  • ⦁ Laosuwan, T., Sangpradid, S., Gomasathit, T., Rotjanakusol, T., 2016. Application of Remote Sensing Technology for Drought Monitoring in Mahasarakham Province, Thailand. International Journal of Geoinformatics, 12(3), 17-25.
  • ⦁ Nikam, B.R., Aggarwal, S.P., Thakur, P.K., Garg, V., Roy, S., Chouksey, A., Dhote, P.R., Chauhan, P., 2020. Assessment of Early Season Agricultural Drought using Remote Sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 1691-1695. XXIV ISPRS Congress (2020 edition).
  • ⦁ Wang, P., Tang, J., Ma, Y., Wu, D., Yang, J., Jin, Z., Huo, Z., 2021. Mapping Threats of Spring Frost Damage to Tea Plants using Satellite-Based Minimum Temperature Estimation in China, Remote Sens. 13, 2713. https://doi.org/10.3390/rs13142713.
  • ⦁ Sabuncu, A., Özener, H., 2019. Uzaktan Algılama Teknikleri ile Yanmış Alanların Tespiti: İzmir Seferihisar Orman Yangını Örneği, Doğ Afet Çev Derg, 5(2), 317-326, DOI: 10.21324/dacd.511688.
  • ⦁ Gobbo, S., Ghiraldini, A., Dramis, A., Dal Ferro, N., Morari, F., 2021. Estimation of Hail Damage Using Crop Models and Remote Sensing. Remote Sens. 13, 2655. https://doi.org/10.3390/rs13142655.
  • ⦁ Nunes, L.H., De Bona, L., Candido, D.H., 2011. Tornado and waterspout climatology in Brazil, 6th European Conference on Severe Storms (ECSS 2011), 3-7 October 2011, Palma de Mallorca, Balearic Islands, Spain.
  • ⦁ Gobato, R., Gobato, A., Fedrigo, D.F.G., 2016. Study of Tornadoes that have Reached the State of Paraná. Parana Journal of Science and Education, 2(1), 1-27.
  • ⦁ Kahraman, A., 2016. Türkiye’de Hortumlar, Şiddetli Dolu Hadiseleri ve Oluştukları Çevre Koşulları. Doktora Tezi, İstanbul Teknik Üniversitesi, İstanbul, 82.
  • ⦁ Ki-Hong, M., Seonhee, C., Gyuwon, L., Kyung-Eak, K., 2017. Synoptic Characteristics of the Japan Tsukuba Tornado, The 2nd International Electronic Conference on Atmospheric Sciences (ECAS 2017), 16–31 July 2017; Sciforum Electronic Conference Series, 1, 4139. 10.3390/ecas2017-04139.
  • ⦁ Sioutas, M.V., 2003. Tornadoes and Waterspouts in Greece, Atmospheric Research, 67-68, 645-656.
  • ⦁ Burow, D., Herrero, H.V., Ellis, K.N., 2020. Damage Analysis of Three Long-Track Tornadoes Using High-Resolution Satellite Imagery, Atmosphere, 11, 613, doi:10.3390/atmos11060613.
  • ⦁ Glanville, M.J., Rohr, C.J., Holmes, J.D., 2016. Tornadic Waterspout Impacts on Coastal Australia, 18th Australasian Wind Engineering Society Workshop, McLaren Vale, South Australia, 6-8 July 2016.
  • ⦁ Chan, PW, Tse, S.M., Lee, J.C.W., Li, QS., 2020. Analysis of a Waterspout at Zhuhai, China, on June 12, 2019. Meteorol Appl. 2020; 27:e1904. https://doi.org/10.1002/met.1904.
  • ⦁ Mihajlović, J., Ducić, V., Burić, D., 2016. Tornadic Waterspout Event in Split (Croatia)-Analysis of Meteorological Environment, J. Geogr. Inst. Cvijic. 66(2), 185–202, DOI:10.2298/IJGI1602185M.
  • ⦁ Lambropoulou, S., Antoniou, S., 2016. Topological Surgery, Dynamics and Applications to Natural Processes, Journal of Knot Theory and its Ramifications, April 14, 2016.
  • ⦁ Güler, H.G., Baykal, C., Tarakcıoğlu, G.Ö., Ergin, A., Güler, I., Yalçıner, A.C., 2014. Sarıgerme Bölgesinde 17 Ekim 2013 Tarihinde Oluşan Hortum ve Bölgeye Etkileri, 8. Kıyı Mühendisliği Sempozyumu, 7-9 Kasım 2014.
  • ⦁ Çabuk, Ö., Güler, H.G., Tarakcıoğlu, G.Ö., Güler, I., Yalçıner, A.C., 2018. Adana Karataş Bölgesinde 28 Ekim 2017 Tarihinde Oluşan Hortum ve Etkileri, 9. Kıyı Mühendisliği Sempozyumu, 1-3 Kasım 2018.
  • ⦁ Coşkun, M., Aksoy, B., 2011. 19 Haziran 2004 Çubuk-Sünlü (Ankara) Hortum Olayı. Doğu Coğrafya Dergisi, 12(17), 203-222 .
  • ⦁ Kolay, O., Özdemir, E.T., Yetemen, Ö., 2020. Bodrum Sel ve Hortum Felaketi: 29 Kasım 2018 Olay Araştırması, Anadolu Çev. ve Hay. Bilimleri Dergisi, 5(4), 491-497.
  • ⦁ Türkeş, M., 2021. Türkiye’de Hortumlar Artıyor mu?, EKOIQ, Mart-Nisan 2021
  • ⦁ Aksu, H., 2021. Nonstationary Analysis of the Extreme Temperatures in Turkey. Dyn Atmos Oceans 95, 101238.
  • ⦁ Eris, E., Cavus, Y., Aksoy, H., Burgan, H.İ., Aksu, H., Boyacıoğlu, H., 2020. Spatiotemporal Analysis of Meteorological Drought Over Kucuk Menderes River Basin in the Aegean Region of Turkey. Theor Appl Climatol 142, 1515–1530. https://doi.org/ 10.1007/s00704-020-03384-0.
  • ⦁ Aksu, H., Cetin, M., Aksoy, H., Yaldiz, S.G., Yıldırım, I., Keklik, G., 2022. Spatial and Temporal Characterization of Standard Duration-Maximum Precipitation Over Black Sea Region in Turkey. Nat Hazards, 111(1):1-27. https://doi.org/10.1007/s11069-021-05141-6.
  • ⦁ MGM, 2018a. Meteorolojik Karakterli Doğal Afetler 2017 Yılı Değerlendirmesi, Meteoroloji Genel Müdürlüğü, Ankara, 2018.
  • ⦁ Kahraman, A., Markowski, P., 2014. Tornado Climatology of Turkey. Mon. Weather Rev. 142, 2345–2352.
  • ⦁ Sirdas, S.A., Ozmen, I., Aydın, M., Yavuz, V.Y., Kaya, S., 2021. Evaluation of Szilagyi Waterspout Nomogram and Triangle Diagram by Era-Interim, 5th International Conference on Reanalysis, https://climate.copernicus.eu/ sites/default/files/repository/Events/ICR5/Posters/14_S5_Sirdas.pdf; Erişim Tarihi: 15.10.2021.
  • ⦁ MGM, 2018b. 2017 Yılı İklim Değerlendirmesi, Meteoroloji Genel Müdürlüğü, Ankara, Şubat 2018.
  • ⦁ AFAD, 2018. Türkiye 2010- 2017 Doğa Kaynaklı Afet Olayları Haritası.
  • ⦁ ESA, 2015. European Space Agency, SENTINEL-2 User Handbook
  • ⦁ L3HARRIS, 2022. https://www. l3harrisgeospatial.com/docs/aboutatmosphericcorrectionmodule.html, Erişim Tarihi: 08.09.2022.
  • ⦁ L3HARRIS, 2022. https://www. l3harrisgeospatial.com/docs/ImageChange.html, Erişim Tarihi: 09.09.2022.
  • ⦁ Otsu, N., 1979. A Threshold Selection Algorithm from Gray-Level Histograms, IEEE Trans. Syst. Man Cybern., SMC-9(1), 62–66.
  • ⦁ European Space Imaging, 2021. Satellite Images of Turkey Show Whirlwind Damage, 21 November 2017. https://www. euspaceimaging.com/satellite-images-of-turkey-show-whirlwind-damage/; Erişim Tarihi: 15.10.2021.