Çelik Doğal Gaz Boruların Eğrilik Kapasitesi Üzerine Örnek Bir Çalışma: İstanbul Boğaz Geçişi

Doğal gaz boru hatları iletim ve dağıtım hattı olarak genellikle iki ana gruba ayrılmaktadır. Ancak doğal gazı bir bölgeden diğerine taşıyabilmek için ise çelik boru hatları (iletim hatları) kullanılmaktadır. Doğal gaz çelik şebeke inşasında bazen düşey veya yatay kurpların dönülmesi gerekebilmektedir. Böyle durumlarda çelik boruların eğrilik kapasiteleri belirleyici olmaktadır. Bunun yanında bu kapasiteyi sınırlayan önemli bir faktör de lokal burkulma durumudur. İstanbul’daki doğal gaz şebekesinin arz güvenliğini güçlendirmek için İstanbul Boğazı’nın her iki yakasında bulunan doğal gaz çelik iletim hatlarının birbirine entegrasyonu planlanmaktadır. Boğaz’ın en kesiti dikkate alındığında bir düşey kurp örnek çalışması olarak değerlendirilebilecek tasarımda sadece boruların eğrilik kapasiteleri, et kalınlıkları ve lokal burkulma sınırları göz önüne alınmıştır. İstanbul doğal gaz şebekesinde kullanılmakta olan çelik borular dikkate alınarak hangi çaptaki boruların hangi eğrilik kapasitelerine ve hangi lokal burkulma sınır değerlerine sahip olduğu tespit edilmiştir. Elde edilen sonuçlara göre X-52 çelik malzemeden üretilmiş 12” çelik borunun en optimum çözümü verdiği tespit edilmiştir.

A Sample Study on Curvature Capacity of Steel Natural Gas Pipes: Bosphorus Crossing

Natural gas pipelines are usually divided into two main branches as transmission and distribution pipelines. Natural gas is usually distributed with polyethylene pipelines for domestic use. However, steel pipelines (transmission pipelines) are used to transport natural gas from one region to another. In the construction of natural gas steel network, it is sometimes necessary to build vertical or horizontal curves. In such cases, the curvature capacities of steel pipes are decisive. Besides, an important factor limiting this capacity is local buckling. To strengthen the supply security of the natural gas network in Istanbul, it has been planned to integrate each other the natural gas steel transmission pipelines on both sides of the Bosphorus. Considering the cross-section of the Bosphorus, only the curvature capacities and thicknesses of the pipes and the local buckling limits have been taken into consideration in the plan, which can be considered as a vertical curve case study. Considering the steel pipes used in the Istanbul natural gas network, it has been determined which diameter pipes have which curvature capacities and local buckling limit values. Depending on the obtained results, it has been concluded that 12” steel pipe made of X-52 steel material gives the most optimum solution.

___

  • 1. Yigit, A., Lav, M.,A, Gedikli, A., 2018. Vulnerability of Natural Gas Pipelines Under Earthquake Effects. Journal of Pipeline Systems Engineering and Practice, 9(1).
  • 2. O’Rourke, M.J., Liu, X., 1999. Response of Buried Pipelines Subject to Earthquake Effects. Monograph No. 3, Multidisciplinary Center for Earthquake Research, University of Buffalo, Buffalo, 249.
  • 3. Yiğit, A., 2021. Embedment Depths of Natural Gas Pipelines. El-Cezerî Journal of Science and Engineering, 8(1); 471-480.
  • 4. İstanbul Gaz Dağıtım A.Ş., 2007. Salacak – Sarayburnu Arası Boğaz Geçiş Hattı Proje Raporu, Proje Çalışmaları, İGDAŞ, İstanbul, Türkiye, 12.
  • 5. Kennedy, R.P., Chow, A.W., Williamson, R. A., 1977. Fault Movement Effects on Buried Oil Pipeline. Journal of the Transportation Engineering Division, ASCE, May, 103, No. TE5, 617-633.
  • 6. Polenta, V., Garvey, S., Chronopoulos, D., Long, A., Morvan, H., 2015. Effects of Pipe Curvature and Internal Pressure on Stiffness and Buckling Phenomenon of Circular Thin-Walled Pipes. ICAMME 2015: XIII International Conference on Applied Mechanics and Materials, February, London.
  • 7. Ye, S., Ding, H., Wei, S., Ji, J.C., Chen, L., 2021. Non-trivial Equilibriums and Natural Frequencies of A Slightly Curved Pipe Conveying Supercritical Fluid. Ocean Engineering, 227(12).
  • 8. American Society of Civil Engineers (ASCE), 1984. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, Committee on Gas and Liquid Fuel Lifeline, ASCE, 473.
  • 9. Trautmann, C.H.,O’Rourke, T.D., 1983. Load-Displacement Characteristics of a Buried Pipe Affected by Permanent Earthquake Ground Movements. Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, PVP-77, ASME, New York, June, 254-262.
  • 10. Hall, W., Newmark, N., 1977. Seismic Design Criteria for Pipelines and Facilities. Current State of Knowledge of Lifeline Earthquake Engineering, ASCE, New York, 18-34.
  • 11. Li, Y., Shuai, J., Jin, Z., Zhao, Y., Xu, K., 2012. Local Buckling Failure Analysis of High-strength Pipelines. Petroleum Science, 14, 549-559.
  • 12. Gresnigt, A.M., Foeken, R.J., 2001. Local Buckling of UOE and Seamless Steel Pipes. The Eleventh International Offshore and Polar Engineering Conference, Stavanger, Norway, June.
  • 13. Mantovano, L., Bravo, R.E., Cravero, S., Cravero, S., Ernst, H.A., 2010. Offshore Installation of Welded Pipe: Local Buckling Evaluation. 8th International Pipeline Conference, Calgary, Alberta, Canada.
  • 14. Karamanos, S., A., Gresnigt, A., M., 2007. Failure of Locally Buckled Pipelines. Journal of Pressure Vessel Technology, ASME, 129(2), 272-279.
  • 15. Türkel, V., 2012. Doğal Gz Dağıtımında Tasarım, İmalat ve Yönetim. İstanbul: İBB İstanbul Gaz Dağıtım A.Ş. (İGDAŞ) Yayınları, 518.
  • 16. Yiğit A., 2015. Deprem Etkisi Altındaki Gömülü Sürekli Boru Hatları, Doktora Tezi, I.T.U. Fen Bilimleri Enstitüsü, İstanbul, 140.