Bir Taş Ocağındaki Patlatma Uygulamalarına Ait En Yüksek Parçacık Hızı ile Frekans İlişkisi

Bilindiği gibi açık ocak patlatmalarında patlatma sonucu, çevreye titreşim dalgaları yayılmakta ve dalgaların geçtiği yerler olumsuz bir şekilde etkilenmektedir. Konu ile ilgili çalışmalar yapan araştırmacılar, dalgaların oluşturduğu zarar derecesinin, en yüksek parçacık hız değeri ile ölçüldüğünü rapor etmişlerdir. Söz konusu hız değeri arttıkça zarar miktarının yüksek olduğu, hız değeri azaldıkça da çevreye verilen zarar miktarının az olduğunu vurgulamışlardır. Yapılan bu çalışmalarda, en yüksek parçacık hız değerinin, ölçekli mesafeye diğer bir değişle patlatma noktası ile ölçüm yapılan nokta arasındaki mesafeye ve bir defada patlayan en yüksek patlayıcı madde miktarına bağlı olduğu görülmektedir. Ancak patlatma sonucu oluşan titreşim dalgalarının sıklığı yani frekans değerleri de çevreye zarar verme derecesini belirlemektedir. Bu çalışmada, bir taş ocağında bir takım patlatma uygulamaları gerçekleştirilerek en yüksek parçacık hız değerleri ölçülmüştür. Bu değerler ile Yanal (Tran), Düşey (Vert) ve Boyuna (Long) frekans değerleri karşılaştırılmış ve yorumlanmıştır.

Frequency Relationship with the Highest Particle Velocity of Blasting Applications in a Quarry

As it is known, as a result of blasting in open pit blasting, vibration waves spread to the environment and the places where the waves pass are adversely affected. Researchers working on the subject have reported that the degree of damage caused by waves is measured with the highest particle velocity value. They emphasized that as the velocity value increases, the amount of damage is high, and as the velocity value decreases, the amount of damage to the environment is less. In these studies, it is seen that the highest particle velocity value depends on the scaled distance, in other words, the distance between the detonation point and the measurement point, and the amount of the highest explosive substance detonated at once. However, the frequency of vibration waves formed as a result of blasting, in other words frequency values, also determines the degree of damage to the environment. In this study, the highest particle velocity values were measured by performing some blasting experiments in a quarry. These values and Transverse (Tran), Vertical (Vert) and Longitudinal (Long) frequency values were compared and interpreted.

___

  • 1. Duval, W.I., Fogelson, 1962. Review of Criteria For Estimating Damage To Residences From Blasting Vibrations, U.S. Bureau of Mines, RI 5868.
  • 2. Ambraseys, N.R., Hendron, A.J., 1968. Dynamic Behavior of Rock Masses, Rock Mechanics. In: Stagg and Zeinkiewicz (eds.). Engineering Practice, John Wiley and Sons Inc., London, 442.
  • 3. Langefors, Khilström, 1978. The Modern Technique of Blasting, 3rd Ed, Halsted Press, 1978, Sweeden, 405.
  • 4. Ghosh, A.K., Samaddar, A.B., 1984. Design of Surface Mine Blast. Min. Eng. J. Inst. Eng., (I), 52–57.
  • 5. Bollinger, G.A., 1971. Blast Vibration Analysis (Carbondale, IL: Southern Illinois University Press).
  • 6. Siskind, D.E., Stagg, M.S., Kopp, J.W., Dowding, C.H., 1980. Structure Response and Damage Produced By Ground Vibrations From Surface Mine Blasting USBM RI 8507.
  • 7. Anderson, D.A., Winzer, S.R., Ritter, A.P., 1982. Blast Design For Optimizing Fragmentation While Controlling Frequency of Ground Vibration Proc. 8th Conf. on Explosives and Blasting Technique (New Orleans, 1982) 69–89.
  • 8. Dowding, C.H., 1985. Blast Vibration Monitoring and Control (Englewood Cliffs, NJ: Prentice-Hall).
  • 9. Siskind, D.E., Crum, S.V., Otterness, R.E., Kopp, J.W., 1989. Comparative Study of Blasting Vibrations From Indiana Surface Coal Mine USBM RI 9226.
  • 10. Anderson, D.A., 1993. Blast Monitoring: Regulations, Methods and Control Techniques Comprehensive Rock Engineering, (Oxford: Pergamon) 4, 95–110.
  • 11. Persson, P.A., Holmberg, R., Lee, J., 1994 Rock Blasting and Explosives Engineering (Boca Raton, FL: CRC Press), 560.
  • 12. Muller, B., 1997. Adapting Blasting Technologies to the Characteristics of Rock Masses in Order to Improve Blasting Results and Reduce Blasting Vibrations Fragblast 1 361–378.
  • 13. Muller, B., Hohlfeld, Th., 1997. New Possibility of Reducing Blasting Vibrations with an Improved Prognosis Fragblast, 1, 379–392.
  • 14. Hoshino, T., Mogi, G., Shaoquan, K., 2000. Optimum Delay Interval Design in Delay Blasting Fragblast-Int. J. Blasting Fragmentation, 4, 139–148.
  • 15. Siskind, D.E., 2000. Vibrations From Blasting (Cleveland, OH: International Society of Explosives Engineers).
  • 16. Chen, G., Huang, S., 2001. Analysis of Ground Vibrations Caused By Open Pit Production Blasts: A Case Study Fragblast-Int. J. Blasting Fragmentation, 5, 91–107.
  • 17. Tripathy, G., Gupta, I.D., 2002. Prediction of Ground Vibrations Due to Construction Blasts in Different Types of Rock Rock Mech. Rock Eng. 35, 195–204.
  • 18. Adhikari, G.R., Theresraj, A.I., Venkatesh, S., Balachander, R., Gupta, R.N., 2004 Ground Vibration Due to Blasting in Limestone Quarries Fragblast-Int. J. Blasting Fragmentation, 8, 85–94.
  • 19. Aldaş, G.G.U., Ecevitoğlu, B., 2008. Waveform Analysis in Mitigation of Blast- induced Vibrations. Journal of Applied Geophysics, 66(1-2), 25-30.
  • 20. Vikipedi, Frekans, tr.wikipedia.org/wiki/Frekans. Erişim Tarihi:09.05.2021
  • 21. Vikipedi, Dalga Boyu, https://tr.wikipedia.org/wiki/Dalga_boyu. Erişim Tarihi:09.05.2021.
  • 22. İnan, S., Öztürk, A., Gürsoy, H., 1993, Stratigraphy of the Ulaş-Sincan (Sivas) Region, Turkish Journal of Earth Sciences, 2, 1-15.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ