Geri Dönüştürülmüş Polietilen Ambalaj Atıkları ile Lamine Edilmiş Denim Kumaşların Mekanik Analizi

Dünyada artan nüfus ve üretim hızı nedeniyle katı atık sahalarında biriken atık miktarı her geçen gün artmaktadır. Özellikle tek kullanımlık ambalaj atıkları kullanıldıktan sonra düzenli depolama sahalarına gitmekte ve bu durum katı atık yönetimi açısından değerlendirildiğinde ciddi bir risk oluşturmaktadır. Öte yandan, büyük bir üretim hacmine sahip olan tekstil sektörü, tonlarca tekstil atığının katı atık sahalarına gömülmesine neden olmaktadır. Bu çalışmanın temel amacı, her iki sektör için de öncelikli atık kategorileri arasında yer alan denim kumaş ve polietilen şişe kapaklarının atıklarını birleştirerek %100 geri dönüştürülmüş lamine tekstil ürünleri üretmektir. Bu kapsamda düşük ve yüksek yoğunluklu polietilen atık şişe kapakları sıcak pres yöntemiyle ayrı ayrı geri dönüştürülmüş ve elde edilen matris plakalar atık denim kumaşlara lamine edilmiştir. Üretilen lamine kumaşların fiziksel ve mekanik özellikleri test edilmiş ve sonuçlar polietilen plakalar ve denim kumaşların test sonuçları ile karşılaştırılmıştır. Bulgular, yüksek yoğunluklu polietilenin laminasyon işleminde daha kolay işlenebileceğini ve ayrıca lamine edildiği kumaşa düşük yoğunluklu polietilene kıyasla daha iyi mekanik özellikler kazandırdığını göstermiştir. %100 atık içeriğine sahip bu lamine tekstillerin, geliştirilmiş özellikleri ile özellikle tente gibi dış mekan uygulama alanlarında kullanılabilecek katma değerli ürünlere sürdürülebilir bir ikame sağlaması beklenmektedir.

Mechanical Analyses of Denim Fabrics Laminated with Recycled Polyethylene Packaging Wastes

Due to the increasing population and production rate in the world, the amount of waste accumulating in solid waste sites is increasing day by day. In particular, disposable packaging wastes go to landfills after they are used, and this situation poses a serious risk when evaluated in terms of solid waste management. On the other hand, the textile industry, which has a large production volume, causes tons of textile waste to be buried in solid waste sites. The major goal of this study is to produce 100% recycled laminated textiles by combining waste from denim fabric and polyethylene bottle caps, which are the priority waste categories for both industries. In this context, low and high density polyethylene waste bottle caps were recycled separately by the hot press method, and the matrix plates obtained were laminated to waste denim fabrics. The physical and mechanical properties of the produced laminated fabrics were tested, and the results were discussed by comparing them with the test results of polyethylene plates and denim fabrics. The findings demonstrated that high density polyethylene could be processed more easily in the lamination process and also imparted better mechanical properties to the fabric to which it was laminated compared to low density polyethylene. These laminated textiles with 100% waste content are expected to provide a sustainable substitute for value-added products that can be used especially in outdoor application areas such as awnings with their improved properties.

___

  • 1. Gaurh, P., Pramanik, H., 2018. A Novel Approach of Solid Waste Management via Aromatization Using Multiphase Catalytic Pyrolysis of Waste Polyethylene. Waste Management, 71, 86–96.
  • 2. Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankermayer, J., Bardow, A., 2020. Towards a Circular Economy For Plastic Packaging Wastes The Environmental Potential of Chemical Recycling. Resources Conservation & Recycling, 162, 105010. 3. Karaagac, E., Koch, T., Archodoulaki, V.M., 2021. The Effect of PP Contamination in Recycled High-density Polyethylene (RPE- HD) from Post-consumer Bottle Waste and Their Compatibilization with Olefin Block Copolymer (OBC). Waste Management, 119, 285–294.
  • 4. Moreno, D.D.P., Saron, C., 2017. Low-density Polyethylene Waste/recycled Wood Composites. Composite Structures, 176, 1152–1157.
  • 5. Shebani, A., Klash, A., Elhabishi, R., Abdsalam, S., Elbreki, H., Elhrari, W., 2018. The Influence of LDPE Content on the Mechanical Properties of HDPE/LDPE Blends. Research & Development in Material Science, 7(5), 1-7.
  • 6. Schyns, Z.O.G., Shaver, M.P., 2020. Mechanical Recycling of Packaging Plastics: A Review. Macromolecular Rapid Communications, 42, 2000415.
  • 7. Meng, X, Fan, W., Adibah, W., Mahari, W., Ge, S., Xia, C., Wu, F., Han, L., Wang, S., Zhang, M., Hu, Z., Ma, N.L., Le, Q.V., Lam, S.S., 2021. Production of Three-dimensional Fiber Needle-punching Composites from Denim Waste for Utilization as Furniture Materials. Journal of Cleaner Production, 281, 125321.
  • 8. Lu, L., Fan, W., Meng, X., Liu, T., Han, L., Zhang, T., Dong, J., Yuan, L., Tian, H., 2020. Modal Analysis of 3D Needled Waste Cotton Fiber/epoxy Composites with Experimental and Numerical Methods. Textile Research Journal, 91(3-4), 358-372.
  • 9. Uncu Akı, S., Candan, C., Nergis, B., Önder, N.S., 2020. Understanding Denim Recycling: A Quantitative Study with Lifecycle Assessment Methodology. Körlü, A. (Ed.), Waste in Textile and Leather Sectors, Intech Open, 1-26.
  • 10. Fernandes, P.R.B., Contin, B., Siqueira, M.U., Ruschel-Soares, R., Baruque-Ramos, J., 2021. Biocomposites from Cotton Denim Waste for Footwear Components. Materials Circular Economy, 3, 1-10.
  • 11. Silva, T.L., Cazetta, A.L., Souza, P.S.C., Zhang, T., 2018. Mesoporous Activated Carbon Fibers Synthesized from Denim Fabric Waste: Efficient Adsorbents for Removal of Textile Dye from Aqueous Solutions. Journal of Cleaner Production, 171, 482-490.
  • 12. Ma, Y., Zeng, B., Wang, X., Byrne, N., 2019. Circular Textiles: Closed Loop Fiber to Fiber Wet Spun Process for Recycling Cotton from Denim. ACS Sustainable Chemistry & Engineering, 7, 11937−11943.
  • 13. Sayem, A.S.M., Haider, J., Naveed, B., Sayeed, M.M.A., Sashikumar, S., 2020. Thermoplastic Composites Reinforced with Multi-layer Woven Jute Fabric: A Comparative Analysis. Advances in Materials and Processing Technologies, doi: 10.1080/2374068X.2020. 1809235.
  • 14. Lv, J., Fu, R., Liu, Y., Zhou, X., Wang, W., Xie, P., Hu, T., 2020. Decorative Wood Fiber/high-density Polyethylene Composite with Canvas or Polyester Fabric. Journal of Renewable Materials, 8, 879-890.
  • 15. Mayer, P., Pyka, D., Jamroziak, K., Pach, J., Bocian, M., 2019, Experimental and Numerical Studies on Ballistic Laminates on the Polyethylene and Polypropylene Matrix. Journal of Mechanics, 35, 187-197.
  • 16. Rokbi, M., Khaldoune, A., Sanjay, M.R., Senthamaraikannan, P., Ati, A., Siengchin, S., 2019. Effect of Processing Parameters on Tensile Properties of Recycled Polypropylene Based Composites Reinforced with Jute Fabrics. International Journal of Lightweight Materials and Manufacture, 3, 144-149.
  • 17. Majumdar, A., Ghosh, A., Saha, S.S., Roy, A., Barman, S., Panigrahi, D., Biswas, A., 2008. Empirical Modelling of Tensile Strength of Woven Fabrics. Fibers and Polymers, 9(2), 240–245.
  • 18. Zhang, Y., Zhang, Q., Zhou, C., Zhou, Y., 2010. Mechanical Properties of PTFE Coated Fabrics. Journal of Reinforced Plastics and Composites, 29(24), 3624–3630.
  • 19. Koffi, A., Koffi, D., Toubal, L., 2021. Mechanical Properties and Drop-weight Impact Performance of Injection-molded HDPE/birch Fiber Composites. Polymer Testing, 93, 106956.
  • 20. Eltahan, E., 2018. Structural Parameters Affecting Tear Strength of the Fabrics Tents. Alexandria Engineering Journal, 57(1), 97-105.
Çukurova Üniversitesi Mühendislik Fakültesi dergisi-Cover
  • ISSN: 2757-9255
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2009
  • Yayıncı: ÇUKUROVA ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ