On Some Generalized Deferred Cesàro Means-II
On Some Generalized Deferred Cesàro Means-II
In this study, using the generalized difference operator $\Delta^{m}$, we introduce some new sequence spaces and investigate some topological properties of these sequence spaces.
___
- [1] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176.
- [2] M. Et, R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
- [3] M. Et, F. Nuray, $\Delta^{m}-$statistical convergence, Indian J. Pure Appl. Math. 32(6) (2001), 961–969.
- [4] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33(3) (1932), 413–421.
- [5] V. K. Bhardwaj, S. Gupta, R. Karan, Köthe-Toeplitz duals and matrix transformations of Cesàro difference sequence spaces of second order, J. Math. Anal. 5(2) (2014), 1–11.
- [6] B. Altay, F. Basar, On the fine spectrum of the difference operator $\Delta$ on $c_{0}$ and $c$, Inform. Sci. 168(1-4) (2004), 217–224.
- [7] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Math. Sci. Ser. B Engl. Ed. 29(2) (2009), 427–434.
- [8] V. K. Bhardwaj, S. Gupta, Cesàro summable difference sequence space, J. Inequal. Appl., 2013(315) (2013), 9.
- [9] M.Candan, Vector-valued FK-space defined by a modulus function and an infinite matrix: Thai J. of Math 12(1) (2014), 155-165.
- [10] M. Et, On some generalized Cesàro difference sequence spaces, ˙Istanbul Üniv. Fen Fak. Mat. Derg. 55/56 (1996/97), 221–229.
- [11] M. Et, M. Mursaleen and M. I¸sık, On a class of fuzzy sets defined by Orlicz functions, Filomat 27(5) (2013), 789–796.
- [12] G.Kılınc, M. Candan, Some Generalized Fibonacci Difference Spaces defined by a Sequence of Modulus Functions, Facta Universitatis, Series: Mathematics and Informatics, 32(1) (2017), 095-116.
- [13] M. A. Sarıgöl, On difference sequence spaces, J. Karadeniz Tech. Univ., Fac. Arts Sci., Ser. Math.-Phys 10, 63-71.