The space $bv_{k}^{\theta }$ and matrix transformations

The space $bv_{k}^{\theta }$ and matrix transformations

In this study, we introduce the space $bv_{k}^{\theta },$ give its some algebraic and topological properties, and also characterize some matrix operators defined on that space. Also we extend some well known results.

___

  • [1] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematical Studies, 85, Elsevier Science Publisher, 1984.
  • [2] A. M. Akhmedov, F. Başar, The fine spectra of the difference operator $\Delta $ over the sequence space $b{v_p},(1 \le p < \infty ),$ Acta Math. Sin. (Engl. Ser.), 23(10) (2007), 1757-1768.
  • [3] F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Analysis 68(2) (2008), 273–287.
  • [4] G.C.H. Güleç, Compact Matrix Operators on Absolute Cesàro Spaces, Numer. Funct. Anal. Optim., 2019. DOI: 10.1080/01630563.2019.1633665
  • [5] G. C. Hazar, M.A. Sarıgöl, On absolute Nörlund spaces and matrix operators, Acta Math. Sin. (Engl. Ser.), 34(5) (2018), 812-826.
  • [6] A. M. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rend. Circ. Mat. Palermo II, 52 (1998), 177-191.
  • [7] E. E. Kara, M. ˙Ilkhan, Some properties of generalized Fibonacci sequence spaces, Linear and Multilinear Algebra 64 (2016), 2208–2223.
  • [8] M. A. Sarıgöl, Spaces of Series Summable by Absolute Cesàro and Matrix Operators, Comm. Math Appl. 7(1) (2016), 11-22.
  • [9] I. J. Maddox, Elements of functinal analysis, Cambridge University Press, London, New York, (1970).
  • [10] M. Stieglitz, H. Tietz, Matrixtransformationen von Folgenraumen Eine Ergebnisüberischt, Math Z. 154 (1977), 1-16.
  • [11] E. Malkowsky, V. Rakocevic, S. Živkovic, Matrix transformations between the sequence space bvk and certain BK spaces, Bull. Cl. Sci. Math. Nat. Sci. Math. 123(27) (2002), 33–46.
  • [12] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford 18(2) (1967), 345-355.
  • [13] M. F. Mears, Absolute Regularity and the Nörlund Mean, Annals of Math., 38(3) (1937), 594-601.