Yüksek Çözünürlüklü CCSM4 Model Verilerine Göre Son Buzul Maksimumunda (SBM) Türkiye’nin Holdridge Ekolojik Bölgeleri ve Günümüz İklim Şartlarıyla Karşılaştırılması

Bu çalışmada, CCSM4 ve ERA-Interim model verileri kullanılarak, Türkiye’de Son Buzul Maksimumu (SBM)’de ve günümüzdeki Holdridge ekolojik bölgeleri (HEB) oluşturulmuş-karşılaştırılmış, CCSM4 verilerine göre SBM’deki iklim özellikleri ortaya koyulmuştur. Analiz sonuçlarına göre SBM’deki sıcaklıkların günümüze göre farkları Karadeniz çevresinde düşükken, Türkiye’nin güneyine ve karasal iç bölgelerine doğru artmaktadır. SBM’deki yağışlar, yüksek dağlık alanlarda (Güneydoğu Toroslar hariç) günümüze göre yüksek, Doğu Anadolu Bölgesi ve deniz kıyıları ile alçak alanlarda düşüktür. HEB sınıflandırmasına göre Türkiye’de SBM’de alçak irtifa koşulları ortadan kalkmakta, dağlık, alpin ve karlı kat genişlemektedir. SBM’de Türkiye’de daha nemli (buharlaşma yağış oranı) koşullar oluştuğu, bu nemliliğin hem sıcaklık düşüşüne bağlı buharlaşma azalmasından hem de yağış artışından kaynaklandığı anlaşılmıştır. SBM’de Türkiye’de günümüzde bulunan çöl çalılığı ve dikenli çalılık biyomları görülmezken, dikenli step, step ve kurak orman biyomu alanları daralmış, diğer biyom alanları genişlemiştir. Çalışma sonucunda CCSM4 verilerinin, Türkiye’nin doğu yarısı için tutarlı, batı yarısı için yarı-tutarlı olduğu görülmüştür.

Holdridge Ecological Zones of Turkey in Last Glacial Maximum (LGM) using High Resolution CCSM4 Model Data and Comparison of Current Climate Conditions

In this study, Holdridge ecological zones (HEZ) were created and compared for current and Last Glacial Maximum (LGM) time using CCSM4 and ERA-Interim model data, and then climatic conditions of Turkey in LGM was analyzed using CCSM4 data. According to the results, the temperature difference in LGM compared today was low around the Black Sea while it increases at south and terrestrial of Turkey. Precipitation in LGM is high at mountain regions (exclude Southwestern Taurus Mountains) while it is low in coastal and low altitude and Eastern Anatolian Regions. According to HEZ results, lower montane is not defined at LGM but montane, sub alpine, alpine and nival conditions expanded. In LGM, more humidity conditions (ratio of evaporation and precipitation) was formed in Turkey connected increasing precipitation and especially decreasing evaporation. Desert scrub and thorn woodland are not defined in LGM, thorn steppe, steppe, dry forest biomes were narrowed while other biome areas were enlarged. In conclusion, it is obtained that CCSM4 data is suitable for eastern half of Turkey, but it is not usable for western half.

___

  • Akçakaya, A., Sümer, U. M., Demircan, M., Demir, Ö., Atay, H., Eskioğlu, O., Çukurçayır, F. (2015). Yeni Senaryolar ile Türkiye İklim Projeksiyonları ve İklim Değişikliği. Ankara: Meteoroloji Genel Müdürlüğü.
  • Atalay, İ. (1984). Mescit Dağının Glasyal Morfolojisi, Ege Coğrafya Dergisi, 2, 31-48. https://dergipark.org.tr/tr/pub/ecd/issue/4892/67072
  • Atalay, İ. (1992). The Paleogeography of Near East and Human Impact. İzmir: Ege University Press.
  • Atalay, İ. (2005). Kuvaterner’deki iklim değişmelerinin Türkiye doğal ortamı üzerindeki etkileri. Türkiye Kuaterner Sempozyumu (TURQUA -V ) içinde (ss. 121–128). İstanbul: İTÜ Avrasya Yer Bilimleri Enstitüsü.
  • Atalay, İ. (1994). Türkiye Vejetasyon Coğrafyası. İzmir: Ege Üniversitesi Basımevi.
  • Atalay, İ. (1996). Palaeosols as indicators of the climatic changes during Quaternary period in S. Anatolia. Journal of Arid Environments, 32 (1), 23–35. doi:10.1006/jare.1996.0003
  • Bayrakdar, C., Çılgın, Z., Döker, M. F., Canpolat, E. (2015). Evidence of an active glacier in the Munzur Mountains, Eastern Turkey. Turkish Journal of Earth Sciences, 24 (1), 56–71. doi:10.3906/yer-1403-7
  • Berger, A., Crucifix, M., Hodell, D. A., C.Mangili, F.McManus, J., B.Otto-Bliesner, E.W.Wolff2, Q. Z.Yin1, A.Abe-Ouchi8, C.Barbante9, V.Brovkin10, I.Cacho11, E. Capron5, P. Ferretti9, A.Ganopolski12, J.O, N. V. R. (2016). Interglacials of the last 800,000years. Reviews of Geophysics, 54, 162–219. doi:doi:10.1002/2015RG000482
  • Brady, E. C., Otto-Bliesner, B. L., Kay, J. E., Rosenbloom, N. (2013). Sensitivity to glacial forcing in the CCSM4. Journal of Climate, 26 (6), 1901–1925. doi:10.1175/JCLI-D-11-00416.1
  • Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M., Negendank, J. F. W. (2008). An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nature Geoscience, 1 (8), 520–523. doi:10.1038/ngeo263
  • Çiner, A., Sarıkaya, M. A. (2013). Buzullar ve iklim değişikliği: Geçmiş, günümüz ve gelecek. Volkan Ş. Ediger (Ed.), Türkiye’de İklim Değişimi ve Sürdürülebilir Enerdi içinde (s. 19–89). İstanbul: ENİVA-Enerji ve İklim Degişikligi Vakfı.
  • Çiner, A., Sarıkaya, M. A. (2017). Cosmogenic 36Cl geochronology of late Quaternary glaciers in the Bolkar Mountains, south central Turkey. Geological Society Special Publication içinde (C. 433, s. 271–287). Geological Society of London. doi:10.1144/SP433.3
  • Clark, P. U., Mix, A. C. (2002). Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews, 21 (1–3), 1–7. doi:10.1016/S0277-3791(01)00118-4
  • Çoban, H. O., Örücü, Ö. K., Arslan, E. S. (2020). Maxent modeling for predicting the current and future potential geographical distribution of Quercus Libani Olivier. Sustainability (Switzerland), 12 (7), 1–17. doi:10.3390/su12072671
  • Cohen, K. M., Gibbard, P. L. (2019). Global chronostratigraphical correlation table for the last 2.7 million years. Quaternary International, 31 (2), 20–31. doi:10.1016/j.quaint.2019.03.009
  • Cox, C. B., Healey, I. N., Moore, P. D. (1977). Biogeography: An Ecological and Evolutionary Approach.Systematic Botany (C. 2). Oxford: Wiley-Blackwell. doi:10.2307/2418264
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Vitart, F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 (656), 553–597. doi:10.1002/qj.828
  • Doğu, A. F. (1993). Sandıras dağında buzul şekilleri. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 2, 263–274.
  • Doğu, A. F., Çiçek, İ., Gürgen, G., Tunçel, H. (1996). Üçdoruk (Verçenik) Dağında buzul şekilleri, yaylalar ve turizm. Türkiye Coğrafyası Ar. ve Uy. Mer. Der., 5, 29–52.
  • Doğu, A. F., Somuncu, M., Çiçek, İ., Tunçel, H., Gürgen, G. (1993). Kaçkar Dağında buzul şekilleri, yaylalar ve turizm. Türkiye Coğrafyası Ar. ve Uy. Mer. Der., 2, 157–184.
  • Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O., … Vuichard, N. (2013). Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Climate Dynamics (C. 40). doi:10.1007/s00382-012-1636-1
  • Eastwood, W. J., Roberts, N., Lamb, H. F., Tibby, J. C. (1999). Holocene environmental change in southwest Turkey: a palaeoecological record of lake and catchment-related changes. Quaternary Science Reviews (C. 18).
  • Erinç, S. (1977). Vejetasyon Coğrafyası. İstanbul: İstanbul Üniversitesi Yayınları.
  • Erinç, S. (2001). Jeomorfoloji II. İstanbul: Der Yayınları.
  • Erlat, E. (1999). El Nino, La Nina ve Güneyli Salınım. Ege Coğrafya Dergisi, 10, 125–148. https://dergipark.org.tr/tr/pub/ecd/issue/4884/66965
  • Erol, O. (1971). Konya, Tuzgölü, Burdur Havzalarındaki pluvial göllerin çekilme safhalarının jeomorfolojik delilleri. Coğrafya Araştırmaları Dergisi, 3–4, 13–52. http://tucaum.ankara.edu.tr/wp-content/uploads/sites/280/2015/08/cadcae3-4_2.pdf
  • Erol, O. (1995). Anadoluda Kuaterner plüvyal ve interplüvyal koşullar ve özellikle güney-İç Anadoluda son buzul çağından bugüne kadar olan çevresel değişimler. Coğrafya Araştırmaları Dergisi, 9 (2), 5–16. http://tucaum.ankara.edu.tr/wp-content/uploads/sites/280/2015/08/cadcae9_2.pdf
  • Fairbanks, R. G. (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342(6250), 637–642. doi:10.1038/342637a0
  • Feng, S., Trnka, M., Hayes, M. ve Zhang, Y. (2017). Why do different drought indices show distinct future drought risk outcomes in the U.S. Great Plains? Journal of Climate, 30 (1), 265–278. doi:10.1175/JCLI-D-15-0590.1
  • Fleming, K., Johnston, P., Zwartz, D., Yokoyama, Y., Lambeck, K., Chappell, J. (1998). Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth and Planetary Science Letters, 163 (1–4), 327–342. doi:10.1016/S0012-821X(98)00198-8
  • Fuhrer, K., Wolff, E. W., Johnsen, S. J. (1999). Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. Journal of Geophysical Research Atmospheres (C. 104). doi:10.1029/1999JD900929
  • GEBCO. (2020). GEBCO data download. 13 Kasım 2020 tarihinde https://download.gebco.net/ adresinden alındı.
  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., … Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24 (19), 4973–4991. doi:10.1175/2011JCLI4083.1
  • Gürgen, G. (2003). Çapans Dağları kuzeyinin (Rize) glasyal morfolojisi. Gazi Eğitim Fakültesi Dergisi, 3 (2003), 159–175. http://www.gefad.gazi.edu.tr/tr/pub/issue/6761/90954
  • Gürgen, G. (2006). Üçdoruk-Dilek Dağları güneyi̇ni̇n glasyal morfoloji̇si̇. Coğrafi Bilimler Dergisi, 4 (2), 67–82. doi: 10.1501/Cogbil_0000000069
  • Gürgen, G. (2009). Anzer-Kemer-Orsor Dağları kuzeyinin (Rize) glasyal morfolojisi. e-Journal of New World Sciences Academy. 4 (4), 175-190. https://dergipark.org.tr/tr/pub/nwsanature/issue/10853/130557
  • Gürgen, G. (2015). Tatos Gediği Buzulu (Rize). Coğrafi Bilimler Dergisi, 13 (2), 161-171. doi: 10.1501/Cogbil_0000000169
  • Gürgen, G. (2016). Çinaçor Buzulu (Tatos Dağları). Coğrafi Bilimler Dergisi, 14 (1),57-69. doi: 10.1501/Cogbil_0000000173
  • Gürgen, G. (2019). Çatakkaya Döküntü Örtülü Buzulu (Tatos Dağları). Coğrafi Bilimler Dergisi, 17 (1), 217-236.doi: 10.33688/aucbd.536616
  • Gürgen, G., Çalışkan, O., Yılmaz, E., Yeşilyurt, S. (2010). Yedigöller Platosu ve Emli Vadisinde (Aladağlar) döküntü örtülü buzullar. e-Journal of New World Sciences Academy, 5 (2), 98–116.
  • Gürgen, G., Çalışkan, O., Yılmaz, E., Yeşilyurt, S. (2012). Bolkar Dağları kuzeydoğusunun glasyal morfolojisi ve döküntüyle örtülü buzulları. Uluslararası İnsan Bilimleri Dergisi, 9 (1), 890–911. https://core.ac.uk/download/pdf/268072694.pdf
  • Hayes, A., Kucera, M., Kallel, N., Sbaffi, L., Rohling, E. J. (2005). Glacial Mediterranean sea surface temperatures based on planktonic foraminiferal assemblages. Quaternary Science Reviews, 24, 999–1016. doi:10.1016/j.quascirev.2004.02.018
  • Holdridge, L. R. (1947). Determination of world plant formations from simple climatic data. Science, 105(2727), 367–368. doi:10.1126/science.105.2727.367
  • Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., … Wolff, E. W. (2007). Orbital and millennial antarctic climate variability over the past 800,000 years. Science, 317 (5839), 793–796. doi:10.1126/science.1141038
  • Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., … Von Storch, J. S. (2013). Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. Journal of Advances in Modeling Earth Systems, 5 (2), 422–446. doi:10.1002/jame.20023
  • Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., … Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4 (1), 1–20. doi:10.1038/sdata.2017.122
  • Kashima, K. (2002). Environmental and climatic changes during the last 20000 years at Lake Tuz, central Turkey. Catena, 48, 3-20. doi: 10.1016/S0341-8162(02)00006-1
  • Kashima, K. (2003). The quantitative reconstruction of salinity changes using diatom assemblages in inland saline lakes in the central part of Turkey during the late Quaternary. Quaternary International, 105 (2003), 13–19. doi:Pii S1040-6182(02)00145-3
  • Kurter, A. (1991). Glaciers of Middle East and Africa-Glaciers of Turkey, Satellite Image Atlas of the World. USGS Professional Paper 1386-G-1.
  • Laskar, J., Fienga, A., Gastineau, M., Manche, H. (2011). La2010: A new orbital solution for the long-term motion of the Earth. Astronomy and Astrophysics, 532, 1–15. doi:10.1051/0004-6361/201116836
  • Leemans, R. (1990). Possible changes in natural vegetation due to a global warming. Global data sets collected and compiled by the Biosphere Project, Working Paper (C. Working Pa). Laxenburg, Austria: IIASA. doi:10.1017/cbo9780511525537.030
  • Lisiecki, L. E., Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography, 20 (1), 1–17. doi:10.1029/2004PA001071
  • Litt, T., Krastel, S., Sturm, M., Kipfer, R., Örcen, S., Heumann, G., … Niessen, F. (2009). “PALEOVAN”, International Continental Scientific Drilling Program (ICDP): site survey results and perspectives. Quaternary Science Reviews, 28 (15–16), 1555–1567. doi:10.1016/j.quascirev.2009.03.002
  • Londeix, L., Herreyre, Y., Turon, J.-L., Fletcher, W. (2009). Last Glacial to Holocene hydrology of the Marmara Sea inferred from a dinoflagellate cyst record. Review of Palaeobotany and Palynology, 158, 52–71. doi:10.1016/j.revpalbo.2009.07.004
  • Major, C. O., Goldstein, S. L., Ryan, W. B. F., Lericolais, G., Piotrowski, A. M., Hajdas, I. (2006). The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance. Quaternary Science Reviews, 25, 2031–2047. doi:10.1016/j.quascirev.2006.01.032
  • Meehl, G. A., Arblaster, J. M. (2011). Decadal variability of Asian-Australian monsoon-ENSO-TBO relationships. Journal of Climate, 24 (18), 4925–4940. doi:10.1175/2011JCLI4015.1
  • Miebach, A., Niestrath, P., Roeser, P., Litt, T. (2016). Impacts of climate and humans on the vegetation in northwestern Turkey: Palynological insights from Lake Iznik since the Last Glacial. Climate of the Past, 12 (2), 575–593. doi:10.5194/cp-12-575-2016
  • Moebs, W., Ling, S. J., Sanny, J. (2016). Precession of a Gyroscope - University Physics Volume 1 | OpenStax. 11 Şubat 2021 tarihinde https://openstax.org/books/university-physics-volume-1/pages/11-4-precession-of-a-gyroscope adresinden erişildi.
  • Mudie, P. J., Marret, F., Aksu, A. E., Hiscott, R. N., Gillespie, H. (2007). Palynological evidence for climatic change, anthropogenic activity and outflow of Black Sea water during the late Pleistocene and Holocene: Centennial- to decadal-scale records from the Black and Marmara Seas. Quaternary International, 167–168, 73–90. doi:10.1016/j.quaint.2006.11.009
  • Önol, B., Semazzi, F. H. M. (2009). Regionalization of climate change simulations over the Eastern Mediterranean. Journal of Climate, 22 (8), 1944–1961. doi:10.1175/2008jcli1807.1
  • Ozalp, I., Caner, H., Kilic, N. K., Avci, M. (2017). Analysis of fossil pollen record from the Late Holocene in the Turkish Highland (Middle Taurus,Turkey). Ecological Questions. doi:10.12775/EQ.2017.022
  • Paillès, C., Blanc-Valleron, M. M., Poulin, M., Crémière, A., Boudouma, O., Pierre, C. (2014). Entomoneis calixasini sp. nov., a new fossil diatom from the Turkish Marmara Sea sediments. Diatom Research, 29 (4), 411–422. doi:10.1080/0269249X.2014.921645
  • Petit, J. R., Jouzel, J., Raynaud, D., Barnola, J. M., Basile, I., Bender, M., … Stievenard, M. (2013). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. The Future of Nature: Documents of Global Change, 348–358. doi: 10.1038/20859
  • Roberts, N. (1983). Age, palaeoenvironments, and climatic significance of late Pleistocene Konya lake, Turkey. Quaternary Research, 19 (2), 154–171. doi:10.1016/0033-5894(83)90002-9
  • Roberts, N. (2014). The Holocene (Third Edit.). Oxford: Wiley Blackwell. doi:10.2307/2261135
  • Ruddiman, W. F., Raymo, M., McIntyre, A. (1986). Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters, 80 (1–2), 117–129. doi:10.1016/0012-821X(86)90024-5
  • Sarıkaya, M. A., Çiner, A., Haybat, H., Zreda, M. (2014). An early advance of glaciers on Mount Akdaǧ, SW Turkey, before the global Last Glacial Maximum; insights from cosmogenic nuclides and glacier modeling. Quaternary Science Reviews, 88, 96–109. doi:10.1016/j.quascirev.2014.01.016
  • Sarıkaya, M.A., Zreda, M., Çiner, A., Zweck, C. (2008). Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quaternary Science Reviews, 27 (7–8), 769–780. doi:10.1016/j.quascirev.2008.01.002
  • Sarıkaya, M. A., Çiner, A., Yıldırım, C. (2017). Cosmogenic 36 Cl glacial chronologies of the Late Quaternary glaciers on Mount Geyikda g in the Eastern Mediterranean. Quaternary Geochronology, 39, 189-204. doi:10.1016/j.quageo.2017.03.003
  • Sarıkaya, M. A., Çiner, A., Zreda, M. (2011). Quaternary glaciations of Turkey. Developments in Quaternary Science, 15 (December), 393–403. doi:10.1016/B978-0-444-53447-7.00030-1
  • Sarıkaya, M. A., Zreda, M., Çiner, A. (2009). Glaciations and paleoclimate of Mount Erciyes, central Turkey, since the Last Glacial Maximum, inferred from 36Cl cosmogenic dating and glacier modeling. Quaternary Science Reviews, 28 (23-24), 2326–2341. doi:10.1016/j.quascirev.2009.04.015
  • Sarıkaya, O., Karaceylan, I. B., Sen, I. (2018). Maximum entropy modeling (maxent) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (curculionidae: Scolytinae) in turkey. Applied Ecology and Environmental Research, 16 (3), 2527–2535. doi:10.15666/aeer/1603_25272535
  • Şenkul, Ç., Doǧan, U. (2013). Vegetation and climate of Anatolia and adjacent regions during the Last Glacial period. Quaternary International, 302, 110–122. doi:10.1016/j.quaint.2012.04.006
  • Şenkul, Ç., Ören, A., Doğan, U., Eastwood, W. J. (2018). Late Holocene environmental changes in the vicinity of Kültepe (Kayseri), Central Anatolia, Turkey. Quaternary International, 486, 107–115. doi:10.1016/j.quaint.2017.12.044
  • Shumilovskikh, L. S., Fleitmann, D., Nowaczyk, N. R., Behling, H., Marret, F., Wegwerth, A., Arz, H. W. (2014). Orbital- and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments. Climate of the Past, 10 (3), 939–954. doi:10.5194/cp-10-939-2014
  • Stockhecke, M., Sturm, M., Brunner, I., Schmincke, H. U., Sumita, M., Kipfer, R., … Anselmetti, F. S.(2014). Sedimentary evolution and environmental history of Lake Van (Turkey) over the past 600 000 years. Sedimentology, 61, 1830–1861.doi: 10.1111/sed.12118
  • Stephens, G. L. (1990). On the relationship between water vapor over oceans and sea surface temperature. Journal of Climate, 3, 634–645. doi: 10.1175/1520-0442(1990)0032.0.CO;2
  • Svenning, J. C., Skov, F. (2004). Limited filling of the potential range in European tree species. Ecology Letters, 7 (7), 565–573. doi:10.1111/j.1461-0248.2004.00614.x
  • Tarasov, P. E., Volkova, V. S., Webb, T., Guiot, J., Andreev, A. A., Bezusko, L. G., … Sevastyanov, D. V. (2000). Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. Journal of Biogeography, 27 (3), 609–620. doi:10.1046/j.1365-2699.2000.00429.x
  • Tomonaga, Y., Brennwald, M. S., Livingstone, D. M., Kwiecien, O., Randlett, M. E., Stockhecke, M., … Kipfer, R. (2017). Porewater salinity reveals past lake-level changes in Lake Van, the Earth's largest soda lake, Sci Rep, 7 (1), 313. https://www.nature.com/articles/s41598-017-00371-w
  • Tonbul, S. (1997). Bi̇ngöl Dağında buzul şeki̇lleri̇. Türkiye Coğrafyası Araştırma ve Uygulama Merkezi Dergisi, 6, 347–374. http://tucaum.ankara.edu.tr/wp-content/uploads/sites/280/2015/08/tucaum6_17.pdf
  • Türkeş, M. (2010). Genel Klimatoloji. Ankara: Ertem Büro.
  • van Zeist, W., Bottema, S. (1982). Vegetational history of the eastern mediterranean and the near east during the last 20.000 years. International Series, 3 (February 2004), 277–371.
  • van Zeist, W., Woldring, H., Stapert, D. (1975). Late Qua- ternary vegetation and climate of southwestern Turkey. Palaeohistoria, 7, 53–143.
  • Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., … Chauvin, F. (2013). The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dynamics, 40 (9–10), 2091–2121. doi:10.1007/s00382-011-1259-y
  • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., … Kawamiya, M. (2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4 (4), 845–872. doi:10.5194/gmd-4-845-2011
  • Yalçınlar, İ. (1951). Soğanlı-Kaçkar ve Mescit Dağı silsilelerinin glasiasyon şekilleri. İstanbul Üniversitesi Edebiyat Fakültesi Coğrafya Bölümü Coğrafya Dergisi, 1 (2), 20–55.
  • Yeşilyurt, S. (2017). Kavuşşahap Dağları'nda (Van) Geç Kuvaterner Buzullaşması: Bölgesel Paleoiklim açısından bir değerlendirme. Ankara Üniversitesi, Sosyal Bilimler Enstitüsü, Basılmamış Doktora Tezi. https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp adresinden edinilmiştir.
  • Yeşilyurt, S., Doğan, U., Akçar, N. (2018). Narlıca Vadisi’nde geç Kuvaterner buzullaşma izleri, Kavuşşahap Dağları. Türk Coğrafya Dergisi, 70, 99–108. doi:19.17211/tcd.415232
  • Yılmaz, E. (2021). Yüksek çözünürlüklü ERA-Interim ve HadGEM2-CC model verilerine göre Türkiye’nin güncel ve gelecekteki Holdridge ekolojik bölgeleri. Coğrafi Bilimler Dergisi, 19 (1), 29–60. doi: 10.33688/aucbd.778259
  • Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., … Kitoh, A. (2012). A new global climate model of the Meteorological Research Institute: MRI-CGCM3: -Model description and basic performance-. Journal of the Meteorological Society of Japan, 90 (A), 23–64. doi:10.2151/jmsj.2012-A02
  • Zahno, C., Akçar, N., Yavuz, V., Kubik, P. W., Schlüchter, C. (2010). Chronology of Late Pleistocene glacier variations at the Uludaǧ Mountain, NW Turkey. Quaternary Science Reviews, 29 (9–10), 1173–1187. doi:10.1016/j.quascirev.2010.01.012
  • Zheng, W., Yu, Y. (2013). Paleoclimate simulations of the mid-Holocene and last glacial maximum by FGOALS. Advances in Atmospheric Sciences, 30 (3), 684–698. doi:10.1007/s00376-012-2177-6