Gerçek ölçekli UASB reaktörlerde metanojenik popülasyon dinamiği

Bu çalışmada, alkol distilasyon atıksularını arıtan, kısaca IUASB, TUASB ve CUASB olarak adlandırılan üç farklı gerçek ölçekli yukarı akışlı anaerobik çamur yatağı (UASB) reaktörünün 2002-2004 yılları arasındaki işletme performansları, Metan Arke komunite yapıları ve Potansiyel Metan Üretim (PMÜ) hızları tartışılmıştır. Aynı süreçte UASB reaktörlerinden 2-12 kg KOİ/m 3 .gün aralığındaki organik yükleme hızlarında, %60-95 aralığında KOİ giderim verimleri elde edilmiştir. Spesifik Metan Aktivite (SMA) test sonuçları IUASB, TUASB ve CUASB reaktörlerinin PMÜ hızlarının 2002 yılında sırasıyla 321, 344 ve 256 mL CH 4 /gUAKM.gün iken, 2004 yılında sırasıyla 133, 109 ve 108 mL CH 4 /gUAKM.gün değerlerine düştüğünü göstermiştir. Reaktörlerden elde edilen gerçek metan üretim (GMÜ) hızları, reaktör çamurlarının PMÜ hızları ile oranlandığında elde edilen değerler, 0.1-0.4, reaktörlerin maksimum kapasitelerinin çok altında yüklendiklerini göstermektedir. Floresanlı yerinde hibritleşme (FISH) sonuçları her üç reaktörde de baskın metanojenlerin, asetoklastik bir cins olan Methanasaeta’ya ait olduğunu göstermiştir. Hidrojen kullanan metan arkelerinden Methanobacteriales TUASB ve CUASB reaktörlerinde, Methanococcales ise IUASB reaktöründe baskın halde bulunmaktadır. IUASB ve TUASB reaktörlerinin asetoklastik metan üretim kapasitelerinde meydana gelen, sırasıyla %59 ve %68’lik kayıplara pararel olarak, reaktörlerde rastlanan tek asetoklastik cins olan Methanosaeta’nın rölatif miktarında sırasıyla %25 ve %11’lik kayıplar, hidrojen kullanan metanojenlerin rölatif miktarlarında ise sırasıyla %20 ve %24’lük bir artış meydana gelmiştir. CUASB reaktöründeki metanojenik komünite yapısı zaman içerisinde stabil kalmıştır.

___

  • Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations, Applied and Environmental Microbiology, 56, 1919-1925.
  • Angenent, L.T., Sung, S., Raskin, L. (2004). Formation of granules and Methanosaeta fibres in an anaerobic migrating blanket reactor (AMBR), Environmental Microbiology, 6, 315-322.
  • Angenent, L.T., Sung, S., Raskin, L. (2002). Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste, Water Resources, 36, 4648–4654.
  • APHA, AWWA, WPCF. (1997). Standard Methods for the Examination of Water and Wastewater, 18th ed., American Public Health Association, Washington, DC 20005.
  • Baier, U., Delavy, P. (2005). UASB treatment of liquid residues from grass bioraffination, Water Science and Technology, 52, 405-411.
  • Delbe´s, C., Moletta, R. Godon, J.J. (2001). Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digester ecosystem, FEMS Microbiology Ecology, 35, 19–26.
  • Driessen, W.J.B.M. (1994). Experience on anaerobic treatment of distillery effluent with the UASB process, Water Science and Technology, 30,193-201.
  • Harmsen, H. J. M., Kengen, H. M. P., Akkermans, A. D. L., Stams, A. J. M. ve de Vos, W. M. (1996). Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes, Applied Environmental Microbiology, 62, 1656-1663.
  • Hofman-Bang, J., Zheng, D., Westermann, P., Ahring, B.K., Raskin, L. (2003). Molecular Ecology of Anaerobic Reactor Systems, Advances in Biochemical Engineering/ Biotechnology, 81, 151-203.
  • Ince, O., Anderson, G.K., Kasapgil, B. (1994). Use of the specific methanogenic activity test for controlling the stability and performance in anaerobic digestion of brewery wastewater. In Proc. 49 th Purdue Industrial Waste Conference, Purdue University, West Lafayette, Indiana, USA.
  • Ince, O., Anderson, G.K. ,Kasapgil, B. (1995). Control of organic loading rate using the specific methanogenic activity test during start-up of an anaerobic digestion system, Water Resources, 29, 349-355.
  • Ince O., Kolukırık M., Ayman N., Ince B. (2005). Comparative evaluation of full-scale UASB reac- tors treating alcohol distillery wastewaters in terms of performance and methanogenic activity. Journal of chemical technology and biotechnology, 80, 138-144.
  • Jawed M., Tare V. (1999). Microbial composition assessment of anaerobic biomass through methanogenic activity tests, Water SA, 25, 345-350.
  • Karadagli, F., Rittmann, B.E. (2005). Kinetic characterization of Methanobacterium bryantii M.o.H, Environmental Science and Technology, 39, 4900-4904.
  • Lathe, R. (1985). Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations, Journal of Molecular Biology, 183,1-12.
  • MacLeod, F.A., Guiot, S.R., Costerton, J.W. (1990). Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor, Applied Environmental Microbiology, 56, 1598-1607.
  • Manz, W., Amann, R., Ludwig, W., Wagner, M., Schleifer, K-H. (1992). Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions, Systematic and Applied Microbiology, 15, 593-600.
  • Monteggia, L. (1991). The Use of a Specific Methanogenic Activity Test Controlling Anaerobic Reactors Doktora Tezi, The University of Newcastle upon Tyne.
  • Pace, N.R., Stahl, D.A., Lane, D.J., Olsen, G.J. (1986). The analysis of natural microbial populations by ribosomal RNA sequences, Advances in Microbiology and Ecology, 9, 1-55.
  • Petersen, S.P. ve Ahring, B.K. (1992). The influence of sulfate on substrate utilization in a thermophilic sewage sludge digester, Applied Microbiology and Biotechnology, 36, 805–814.
  • Raskin L., Stromley J.M., Rittmann B.E., Stahl D.A. (1994). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens, Applied Environmental Microbiology, 60, 1232-1240.
  • Schnurer, A., Houwen, F.P., and Svensson, B.H. (1994). Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonia concentration, Archives of Microbiology, 162, 70–73.
  • Speece R.E. (1996). Anaerobic Biotechnology, Archae Press.
  • Sponza, Delia Teresa (2002). Tetrachloroethylene (TCE) removal during anaerobic granulation in an upflow anaerobic sludge blanket (UASB) reactor. Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 37, 213-236.
  • Stahl, D. A., Flesher, B., Mansfield, H. R., Montgomery, L. (1988). Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology, Applied Environmental Microbiology, 54, 1079-1084.
  • Stahms, A.J.M, Elferink, S.J.W.H.O., Westerman, P. (2003). Metabolic Interactions Between Methanogenic Consortia and Anaerobic Respiring Bacteria, Advances in Biochemical Engineering, 81, 31-56.
  • Wagner, M., Horn, M., Daims, H. (2003). Fluorescence in situ hybridisation for the identification and charcterisation of prokaryotes, Curr Opinion Microbiology, 6, 302-309.
  • Zinder, S. H. (1993). Physiological ecology of methanogens, p. 128–206. In J. G. Ferry (ed.), Methanogenesis: ecology, physiology, biochemistry and genetics, Chapman & Hall, NewYork, N.Y.