Biyolojik aşırı fosfor gideren aerobik granüler biyokütlenin mikrobiyolojik özellikleri

Tam-ölçekli konvansiyonel bir biyolojik arıtma tesisinden alınan floküler biyokütle ile başlatılan laboratuvar-ölçekli ardışık kesikli reaktörde, anaerobik/aerobik işletme ve fosfor ile besleme sonucu biyolojik aşırı fosfor giderimi (BAFG) elde edilmiştir. Çökelme süresinin kısaltılması (15 dak), ilk hacmin düşürülmesi (V 0 1.8 L), hacimsel karbon yüklemesinin yükseltilmesi (1.41 kg KOİ/m 3 .gün) ve havalandırma kaynaklı kesme kuvvetinin artırılması (0.19 cm/s) ile, fosfor depolayan organizmalar (PAO) gibi yavaş-büyüyen organizmaların varlığı ile iyileşeceği öngörülen aerobik granülasyon süreci desteklenmiştir. Üstün çökelme özelliklerine (ÇHİ< 40-50 mL/g) sahip aerobik granüler BAFG biyokütlesi ile kararlı halde %92 karbon, %99 fosfor ve %78 azot giderimi elde edilmiştir. Sistemin biyokimyasal performansının izlenmesine paralel olarak, aerobik granüler BAFG biyokütlesinin mikrobiyolojik değerlendirmesi için morfolojik ve ekofizyolojik incelemeler gerçekleştirilmiştir. Hücre-içi poli-P (poli-fosfor) ve PHB (poli-hidroksi-bütirat) depolarının görsel tespiti için uygulanan Neisser ve Sudan Black B boyamaları sonucu, biyokütlenin morfolojik ve ekofizyolojik açılardan çeşitlilik gösterdiği saptanmıştır. Sistemde baskın tür, tanımlanmış morfolojileri ve ekofizyolojileri ile çubuksu PAO’lardır. Bunların yanısıra, morfolojik olarak glikojen depolayan organizmalara (GAO) benzeyen ancak ekofizyolojik özellikler açısından GAO-fenotipine uymayan tetrad/sarcina-benzeri hücreler (TFO) belirlenmiştir. Ayrıca, diplo-kokkoidlere, yoğun kokoid topluluklara, az miktarda filamentlere ve çeşitli protozoalara rastlanmıştır. Mikroskopik gözlemler niteliksel olmakla birlikte, sistemin biyokimyasal dönüşüm süreçleri bağlamındaki niceliksel performansı ile örtüşmektedir. Burada mikrobiyolojik özellikleri özetlenen aerobik granüler BAFG biyokütlesinin, mühendislik uygulamaları bağlamındaki üstün özellikleri nedeniyle, bu uygulamanın biyolojik atıksu arıtımında yeni ve gelecek vaadeden bir seçenek olacağı öngörülmektedir.

___

  • APHA, AWWA, WEF (1998). Standard Methods for the Examination of Water and Wastewater, 20th Edn., Washington D.C., USA.
  • Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A. ve Heijnen, J.J., (1999). Aerobic granulation in a sequencing batch reactor, Water Research, 33, 10, 2283-2290.
  • Bond, P.L., Erhart, R., Wagner, M., Keller, J. Ve Blackall, L.L., (1999). Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems, Applied and Environmental Microbiology, 65, 9, 4077-4084.
  • Brock, T.D., Madigan, M.T., Martinko, J.M., ve Parker, J., (1994). Biology of Microorganisms, 7th edn., Prentice-Hall Inc., NJ, USA.
  • Crocetti, G.R., Hugenholtz, P., Bond, P.L., Schuler, A., Keller, J., Jenkins, D. ve Blackall, L.L., (2000). Identification of polyphosphate- accumulating organisms and design of 16S rRNA- directed probes for their detection and quantitation, Applied and Environmental Microbiology, 66, 3, 1175-1182.
  • de Kreuk, M.K. ve van Loosdrecht, M.C.M., (2004). Selection of slow growing organisms as a means for improving aerobic granular sludge stability, Water Science And Technology, 49, 11-12, 9-17.
  • Dulekgurgen, E., Ovez, S., Artan, N., Orhon, D. (2003). Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor, Biotechnology Letters, 25, 687-693.
  • Etterer, T. and Wilderer, P.A., (2001). Generation and properties of aerobic granular sludge, Water Science and Technology, 43, 3, 19-26.
  • Florentz M., Granger P. ve Hartemann P., (1984). Use of 31P nuclear magnetic resonance spectroscopy and electron microscopy to study phosphorus metabolism of microorganisms from wastewaters, Applied and Environmental Microbiology, 47, 3, 519-525.
  • Griffiths, P.C.; Stratton, H.M; Seviour, R.J. (2002). Environmental factors contributing to the ‘‘G Bacteria’’ population in full-scale EBPR plants, Water Science and Technology, 46, 4-5, 185–192. International Organization for Standardization (1986). In: Technical Committee ISO/TC 147, eds. International Standard ISO 6060: Water Quality – Determination of the chemical oxygen demand, Reference No. ISO 6060-1986(E), 1st edn. Switzerland: ISO.
  • Jenkins, D., Richard, M.G., Daigger, G.T. (1993). Manual on the Causes and Control of Activated Sludge Bulking and Foaming, 2 nd edn., Lewis Publishers Inc., Michigan, USA.
  • Levantesi, C., Serafim, LS., Crocetti, GR., Lemos, PC., Rossetti, S., Blackall, LL., Reis, MAM., ve Tandoi, V., (2002). Analysis of the microbial community structure and function of a laboratory scale enhanced biological phosphorus removal reactor, Environmental Microbiology, 4, 559-569.
  • Liu, W.T. (1995). Function, Dynamics, and Diversity of Microbial Population in Anaerobic Aerobic Activated Sludge Processes for Biological Phosphate Removal. Ph.D. dissertation, University of Tokyo, Japan.
  • Liu, WT., Mino, T., Matsuo, T., Nakamura, K., (1996). Glycogen accumulating population and its anaerobic substrate uptake in anaerobic- aerobic activated sludge without biological phosphorus removal, Water Research, 30, 75-82.
  • Liu, Y. ve Tay, J.-H., (2002). The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Research, 36, 7, 1653-1665.
  • Liu, Y., Wang, Z.-W. ve Tay, J.-H., (2005). A unified theory for upscaling aerobic granular sludge sequencing batch reactors, Biotechnology Advances, 23, 5, 335-344.
  • Liss, S.N.; Liao, B.Q.; Droppo, I.G; Allen, D.G.; Leppard, G.G. (2002). Effect of solids retention time on floc structure, Water Science and Technology, 46, 1-2, 431-438.
  • Mino T., van Loosdrecht M.C.M. ve Heijnen J.J., (1998). Microbiology and biochemistry of the enhanced biological phosphate removal process, Water Research, 32, 11, 3193-3207.
  • Mino, T. (2000). Microbial selection of polyphosphate-accumulating bacteria in activated sludge wastewater treatment processes for enhanced biological phosphate removal, Biochemistry (Moscow), 65, 405-413.
  • Morgenroth, E., Sherden, T., van Loosdrecht, MCM., Heijnen, JJ., Wilderer, PA., (1997). Rapid communication: Aerobic granulation in a sequencing batch reactor, Water Research, 31: 3191-3194.
  • Streichan, M., Golecki, J. R. ve Schon, G., (1990). Polyphosphate-accumulating bacteria from sewage plants with different processes for biological phosphorus removal, FEMS Microbiology Ecology, 73, 113-124.
  • Tay, J.H., Liu, Q.S. ve Liu, Y., (2004). The effect of upflow air velocity on the structure of aerobic granules cultivated in a sequencing batch reactor, Water Science and Technology, 49, 11-12, 35-40.
  • Tsai, CS. ve Liu, WT., (2002). Phylogenetic and physiological diversity of tetrad-forming organisms in deteriorated biological phosphorus removal systems, Water Science Technology, 46: 179-184.