Yenidoğan streptozotosin diyabet modelinde pankreatik beta hücre rejenerasyonunu kontrol eden genlerin ekspresyonu

Bu çalışmanın amacı, yenidoğan streptozotosin (yd-STZ) diyabet modelinde, erken dönemlerde beta hücre rejenerasyonunu takip etmek amacıyla, insülin, pankreatik duedonal homeobox gen-1 (pdx-1) ve sinaptofisin gen ekspresyonlarını hem adacık içi hem de adacık dışı hücrelerdeki dağılımlarını tespit etmektir. Ayrıca STZ uygulaması ile bozulan adacık düzeninin yeniden yapılanmasında, endokrin hücrelerin rolünü araştırmaktır. Çalışmada, her birinde 7 adet Wistar albino yenidoğan sıçanlardan oluşan 8 grup oluşturuldu. 4 gruba doğumun 2. günü 100 mg/kg tek doz STZ (yd2-STZ) uygulaması yapıldı ve gruplar sırasıyla doğumun 3., 5., 7. ve 10. günlerinde sağlıklı kontrol grupları ile birlikte dekapite edildiler. Alınan pankreas dokuları % 10’luk formolde tespit edilerek parafine gömüldü. Doku kesitlerine insülin probu kullanılarak in situ hibridizasyon yöntemi, ayrıca insülin, glukagon, somatostatin, sinaptofisin, pdx-1 antikorları kullanılarak immünohistokimyasal boyama yöntemi uygulandı. STZ uygulanan gruplarda kontrol gruplarına göre adacıkların küçüldüğü, Yd2- STZ diyabetik gruplarda insülin mRNA sinyallerini içeren hücrelerin kapladığı alanın, insülin immün pozitif hücrelerin kapladığı alandan daha az olduğu görüldü. Yd2-STZ gruplarında adacık içerisindeki immün pozitif pdx-1 hücrelerinin kontrol gruplara göre azaldığı ayrıca tüm deney gruplarında adacıklardaki tüm endokrin hücrelerin sinaptofisin ekspresyonu yaptıkları tespit edildi. STZ uygulanan gruplarda ekzokrin doku ve kanal epiteli içerisinde çok sayıda sinaptofisin immün pozitif hücrelere rastlandı. yd2-STZ modelinde, STZ’nin neden olduğu beta hücre hasarının en fazla görüldüğü günün yd-2 STZ 5 günlük grup olduğu ve 5. günden başlayarak 7 ila 10. günler arasında hızlı bir rejenerasyonun meydana geldiği, sinaptofisin ve pdx-1’in birlikte, olası öncül hücrelerin endokrin hücreye dönüşümünü tespit etmek için iyi birer belirteç olacakları sonucuna varıldı.

The expression of genes that regulat pancreatic beta cell regeneration in neonatal streptozotocin diabetic model

The aims of this study are to determine distribution of gene expression of insulin, pdx-1 and synaptophisin in both intra and extra islet cells, to determine the role of the endocrine cells in the remodelling of islets that was damaged with STZ treatment in the early stages of the neonatal STZ (n-STZ) diabetic model. In this study 8 groups each containing 7 neonatal Wistar albino rats were established. On the second day after birth 100mg/kg STZ (n-STZ) was given four groups. Each group was decapitated on the 3rd, 5th, 7th and 10th day respectively together with the healthy control groups. Pancreas tissue was fixed in % 10 formaline and embedded in paraffin. Digoxigenin labeled insulin was used for in situ hybridization. Insulin, glucagon, somatostatin, synaptophisin and pdx-1 antibodies were used for immunohistochemistry on serial parafine sections. Islet sizes of STZ treated groups were smaller than control groups, while the area containing insulin mRNA signal positive cells in n-STZ diabetic group were smaller than controls. Although pdx-1 immunopositive cells were decreased in STZ diabetic groups compared to control groups. Numerous synaptophysin positive cells were detected in the lining of duct epithelium as well as exocrine tissue in the STZ diabetic groups. Beta cell destrucition was in the highest level in n-STZ 5 days group, and an effective beta cell regeneration occured between 7 th and 10 th day of the experiment. Synapthophysin and pdx-1 may be a useful marker in the detection of precursor cells transforming to β cells.

___

  • 1. Rooman I, Heremans Y, Heimberg H, et al.Modulation of rat pancreatic acinoductal transdifferentiation and expression of PDX-1 in vitro.Diabetologia 2000; 43:907-914.
  • 2. Gomez-Dumm CL, Semino MC, Gagliardino JJ. Quantitative morphological changes in endocrine pancreas of rats with spontaneous diabetes mellitus.Virchous Archiv B Cell Pathol 1989; 57:375-381.
  • 3. Waguri M Yamamato K, Miyagawa J, et al. Demostration of two different processes of β cell regeneration in a new diabetic mouse model induced by selective perfusion of alloxan. Diabetes 1997; 46: 1281-1290.
  • 4. Ferrand N, Astesana A, Phan HH, et al. Dynamics of pancreatic cell growth and differentiation during diabetes reversion in STZ treated newborn rats .Am J Physiol 1995; 269 (Cell Physiol 38): 1250-1264.
  • 5. Portha B, Blondel O, Serradas P, et al. The rat models of non-insülin dependent diabetes induced by neonatal streptozotocin. Diabetes Metabolisme. 1989;15:61-75.
  • 6. Movassat J, Saulnier C, Portha B. Insülin administration enhances growth of the B cell mass in streptozotocintreated newborn rats Diabetes 1997;46: 1445-1452.
  • 7. Oztürk M, Bolkent S, Kaya Dagistanli F, et al. Effects of 5-aminoimidazole-4-carboxamide riboside on pancreas in neonatal streptozotocin diabetic rats. Acta Diabetol 2006; 43:61-65.
  • 8. Oztürk M, Tunçdemir M, Bolkent S, et al. Effect of AICA-riboside treatment on aortic alteration in neonatal STZ-induced diabetic rat. In: Angiogenesis, Models, Modulators and Clinical Applications. Plenum Press, New York and London. 1998: pp541-542.
  • 9. Kaya F. Yenidoğan streptozotocin diabetik sıçanlarda somatostatin analoğu ve kalsiyum kanal blokerinin apoptoz üzerine etkileri. İ.Ü. Sağlık Bilimleri Enstitüsü Tıbbi Biyoloji Anabilim Dalı. Bitmiş Yüksek Lisans Tezi; 1998.
  • 10. Risbud MV, Bhonde RR. Models of pancreatic regeneration in diabetes. Diabetes Res Clin Pract 2002; 58: 155-165.
  • 11. Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest 1983; 71: 1544-1553.
  • 12. Wang RN, Kloppel G, Bouwens L. Duct- to islet-cell differentiation and islet growth in the pancreas of ductligated adult rats. Diabetologia 1995; 38:1405-1411.
  • 13. Wang RN, Bouwens L, Kloppel G. Beta-cell proliferation in normal and streptozotocin-treated newborn rats: site, dynamics and capacity. Diabetologia 1994; 37:1088-1096.
  • 14. Song KH, Ko SH, Ahn YB, et al. In vitro transdifferentiation of adult pancreatic acinar cells into insulinexpressing cells. Biochem Biophys Res Commun 2004; 316:1094-1100.
  • 15. Bouwens L, Wang RN, De Blay E, et al. Cytokeratins as markers of ductal cell differentiation and islet neogenesis in the neonatal rat pancreas. Diabetes 1994; 43: 1279-1283.
  • 16. Bouwens L. Transdifferentiation versus stem cell hypothesis for the regeneration of islet beta-cells in the pancreas. Microsc Res Tech 1998; 43:332-336.
  • 17. Zangen DH, Bonner Weir S, Lee CH, et al. Reduced insülin, GLUT2, and IDX-1 in beta cells after partial pancreatectomy. Diabetes 1997; 46:258-264.
  • 18. Petropavlovskaia M, Rosenberg L. Identification and characterization of small cells in the adult pancreas: potential progenitor cells? Cell Tissue Res 2002; 310: 51-58.
  • 19. McKinnon CM, Docherty K. Pancreatic duodenal homeobox-1, PDX-1, a major regulator of beta cell identity and function. Diabetologia 2001; 44: 1203-1214.
  • 20. Fernandes A, King LC, Guz Y, et al. Teitelman G.Differentiation of new insulin-producing cells is induced by injury in adult pancreatic islets. Endocrinology 1997; 138: 1750-1762.
  • 21. Wiedenmann B, Franke WW, Kuhn C, et al. Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA. 1986, 83(10): 3500-3504.
  • 22. Lukinius A, Stridsberg M, Wilander E. Cellular expression and specific intragranular localization of chromogranin A, chromogranin B, and synaptophysin during ontogeny of pancreatic islet cells: an ultrastructural study. Pancreas 2003; 27:38-46
  • 23. Tezel GG, Tezel E. Nöroendokrin-dışı tümörlerde nöroendokrin diferansiasyon ve nöroendokrin diferansiasyonun moleküler biyolojisi. Erişim: 26.03.06 http:// www.medinfo.hacettepe.edu.tr/tebad/dergi/ doc/2005_1/19-27.doc
  • 24. Wali RK, Dudeja PK, Bolt MJG, et al. Correction of abnormal small intestinal cytosolic protein kinase C activity in streptozotocin-induces diabetes by insulin theraphy. Biochem J 1990; 272: 653-658.
  • 25. Bolkent S, Yılmazer S, Oztürk M. Combined non-radioactive detection of peptide hormones and their mRNAs in stomach somatostatin cells. Regul Pept 1995; 22: 17-21.
  • 26. Thyssen S, Arany E, Hill DJ. Ontogeny of regeneration of beta-cells in the neonatal rat after treatment with streptozotocin. Endocrinology 2006; 147: 2346-2345.
  • 27. Cantenys D, Portha B, Dutrillaux MC, et al. Histogenesis of the endocrine pancreas in newborn rats after destruction by streptozotocin. An immunocytochemical study.Virchows Arch B Cell Pathol Incl Mol Pathol 1981; 35: 109-122.
  • 28. Dutriloux MC, Portha B, Roze C, et al. Ultrastructural study of pancreatic β - cell regeneration in the newborn rats after destruction by streptozotocin. Virchows Archiv (Cell Pathol) 1982; 39: 173-185.
  • 29. Wang RN, Bouwens L, Kloppel G. Beta-cell growth in adolescent and adult rats treated with streptozotocin during the neonatal period. Diabetologia.1996; 39: 548-547.
  • 30. Jain K, Logothetopoulos J. Proinsulin biosynthesis by pancreatic islets of the rat and the study of alloxan cytotoxicity in vitro. Biochim Biophys Acta 1976; 435: 145-151.
  • 31. Maldonato A, Trueheart PA, Renold AE, et al. Effects of streptozotocin in vitro on proinsulin biosynthesis, insulin release and ATP content of isolated rat islets of Langerhans. Diabetologia 1976; 12: 471-481.
  • 32. Bonner-Weir S, Trent DF, Honey RN, et al. Responses of neonatal rat islets to streptozotocin: limited B-cell regeneration and hyperglycemia. Diabetes 1981; 30: 64-69.
  • 33. Li L, Yi Z, Seno M, et al. Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats. Diabetes 2004,53: 608-615.
  • 34. Rosenberg L. In vivo cell transformation: neogenesis of beta cells from pancreatic ductal cells. Cell Transplant 1995; 4: 371-383.
  • 35. Rosenberg L, Brown RA, Duguid WP. A new approach to the induction of duct epithelial hyperplasia and nesidioblastosis by cellophane wrapping of the hamster pancreas. J Surg Res 1983; 35: 63-72.
  • 36. Cornelius JG, Tchernev V, Kao KJ, et al. In vitro-generation of islets in long-term cultures of pluripotent stem cells from adult mouse pancreas. Horm Metab Res 1997; 29: 271-277.
  • 37. Mashima H, Ohnishi H, Wakabayashi K, et al. Betacellulin and activin A coordinately convert amylasesecreting pancreatic AR42J cells into insulin-secreting cells. J Clin Invest 1996; 97: 1647-1654.
  • 38. Gu D, Arnush M, Sarvetnick N. Endocrine/exocrine intermediate cells in streptozotocin -treated Ins-IFNgamma transgenic mice. Pancreas 1997; 15: 246-250.
  • 39. Movassat J, Saulnier C, Portha B. Insulin administration enhances growth of the beta-cell mass in streptozotocintreated newborn rats. Diabetes 1997; 46: 1445-1452.
  • 40. Suzuki T, Kadoya Y, Sato Y, et al. The expression of pancreatic endocrine markers in centroacinar cells of the normal and regenerating rat pancreas: their possible transformation to endocrine cells. Arch Histol Cytol. 2003; 66: 347-358.
  • 41. Permutt MA, Kipnis DM. Insulin biosynthesis. I. On the mechanism of glucose stimulation. J Biol Chem 1972; 247: 1194-1199.
  • 42. Ashcroft SJ, Bunce J, Lowry M, et al. The effect of sugars on (pro)insulin biosynthesis. Biochem J 1978; 174: 517-526.
  • 43. German M, Ashcroft S, Docherty K, et al. The insulin gene promoter. A simplified nomenclature. Diabetes 1995; 44: 1002-1004.
  • 44. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 1996; 122: 1409-1416.
  • 45. Ahlgren U, Jonsson J, Jonsson L, et al. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev 1998; 15:1763-1768.
  • 46. Stoffers DA, Zinkin NT, Stanojevic V, et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 1997; 15: 106-110.
  • 47. Arantes VC, Teixeira VP, Reis MA, et al. Expression of PDX-1 is reduced in pancreatic islets from pups of rat dams fed a low protein diet during gestation and lactation. J Nutr 2002; 132: 3030-3035.
  • 48. Elrick LJ, Docherty K. Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic düodenal homeobox-1. Diabetes 2001; 50: 2244-2252.
  • 49. Wang Y, Egan JM, Raygada M, et al. Glucagon-like peptide-1 affects gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cells. Endocrinology 1995; 136: 4910-4917.
  • 50. Melloul D. Transcription factors in islet development and physiology: role of PDX-1 in beta-cell function. Ann N Y Acad Sci 2004; 1014: 28-37.
  • 51. Hui H, Perfetti R. Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur J Endocrinol 2002; 146: 129-141.
  • 52. Bonner-Weir S. Perspective: Postnatal pancreatic beta cell growth. Endocrinology 2000; 141: 1926-1929.