Sıçanlarda deneysel bakır uygulamasının oksidan ve antioksidan sistemler üzerine etkileri

Çalışmamız bakırın oksidatif ve defans sistemleri üzerindeki etkisini araştırmak amacıyla planlandı. Deney hayvanı olarak ağırlıkları 200-250 gr arasında değişen Wistar albino türü dişi sıçanlar kullanıldı. Kontrol sıçanlar normal diyet ve su ile beslenirken, deney grubunun içme sularına dokuz hafta süreyle bakır ilave edildi. Deney süresi sonunda her iki grubun serum bakır konsantrasyonu, SOD aktivitesi ve GSH düzeyleri ve plazma MDA konsantrasyonları ölçüldü. Bakır konsantrasyonu, MDA düzeyi ve SOD aktivitesinin deney grubunda kontrol grubuna göre yüksek olduğu saptandı (p

Effect of experimental copper application on oxidant and antioxidant systems

Background.- Even though copper is necessary trace element for the organism, some recent studies report that copper may have some oxidative damage effects. Oxidative damage of copper has been reported in recent studies even though it is necessary for organism as a trace element. Present study has been planned to determine the oxidative effects of copper on blood and the defense system. Design.- In this study Wistar albino type female rats weighting 200-250g were used. The control (n=9) and experimental groups (n=9) were fed normal diet and water, the experimental group also received copper in their drinking water for nine weeks. After experimental period serum copper concentrations, erythrocyte superoxide dismutase (SOD) activity and glutathione (GSH) levels and plasma malondialdehyde (MDA) concentrations were measured in both group. Results.- MDA concentrations and SOD activities of experimental group were found higher than controls (p

___

  • 1. Marceau N, Aspin N. The intracellular distribution of radio-copper derived from ceruloplasmin and from albumin, Biochem. Biophys Acta 1973; 328: 338-350.
  • 2. Gutteridge JMC, Stocks J. Ceruloplasmin: Physiological and pathological perspectives. CRC. Crit. Rev. Clin. Lab. Sci. 1981; 14:257-329.
  • 3. Halliwell B, Gutteridge JMC. Oxygen toxicity oxygen radicals transition metals and disease. Biochem J. 1984; 219: 1-14.
  • 4. Hochstein P, Kumar KS, Forman SJ. Lipid Peroxidation and the cytotoxicity of copper. Ann NY Acad Sci. 1980; 355:240-248.
  • 5. Britton RS. Metal induced hepatotoxicity. Semin Liver Dis. 1996; 16:3-12.
  • 6. Gaetke LM, Chow CK. Copper toxicity, oxidative stress and antioxidant nutrients. Toxicology. 2003; 189: 147-163.
  • 7. Brown A, Taylor A. Applications of aslotted quartz tube and flame atomic absorption spectrometry to the analysis of biological samples. Analyst June. 1985; 110: 579-582.
  • 8. Slater TF. Overview of methods used for detecting lipid peroxidation. Methods in Enzimology. 1984; 105: 283-293.
  • 9. Nebot C, Moutet M, Huet P, Xujz-Yadan JC, Chaudiere J. Spectrophotometric assay of Superoxide Dismutase Activity Based on the activated. Autoxidation of a Tetracyclic Catehol. Analytical Biochemistry. 1993; 214: 442-451.
  • 10. Anderson ME. Enzymatic and chemical methods for the determination of Glutathione. In: Glutathione Chemical, biochemical and medical aspects, edited by Vol, A., Dolfin, D., Paulson, R. & Auramovic, O. John Wiley and Sons 1989; 339-365.
  • 11. Fridovich I Superoxide radical and superoxide dismutases. Annu. Rev. Biochem 1995; 64: 97-112.
  • 12. Meister, A. Selective modification of glutathione metabolism. Science 1983; 220: 472-477.
  • 13. Yagi, K. In: Lipid peroxides in biology and medicine. Academic press, Orlando FL. 1982; 223-242.
  • 14. Zhang SS, Noordin MM, Rahman SO, Haron J. Effects of , copper overload on hepatic lipid peroxidation andefence in rats. Vet Hum Toxicol. 2000; 42:261-264.
  • 15. Sansinanea AS, Cerone SI, Streitenberger, S.A., Garcia, C, Auza, N. Oxidative effect of hepatic copper overload. Acta Physiol Pharmacol Ther. Latinoam 1998; 48: 25-35.
  • 16. Ossola JO, Groppa MD, Tomaro ML Relationship between oxidative stres and heme oxygenase induction by copper sulfate. Arch Biochem Biophys. 1997; 337: 332-337.
  • 17. Pedersen JZ. Cu-glutathione complexes under physiological conditions: Structures in solution different from the solid state coordination. Biometals. 1996; 9: 3-
  • 18. Hanna PM, Mason RP. Direct evidence for inhibation of free radical formation Cu (I) and H202by GSH and other potential ligands using the EPR Spin trapping technique. Arch Biochem Biophys 1992; 295: 205-213.