Koroner arter hastalığında lesitin: Kolesterol açiltransferaz ve kolesterol ester transfer protein aktivitelerinin araştırılması

Ters kolesterol taşınımında rol oynayan üç önemli faktör; yüksek dansiteli lipoprotein (high density lipoprotein, HDL), lesitin: Koles¬terol açiltransferaz (lecithine: Cholesterol acyl-transferase, LCAT) ve kolesterol ester transfer protein (cholesterol ester transfer protein, CETP)'dir. Bu faktörlerle ilgili çeşitli bozuk¬luklar koroner arter hastalığı gelişiminden so¬rumlu tutulmaktadır. Çalışmaya alman, koro¬ner anjiyografileri yapılmış 96 olgudan 20'si tek damar, 20'si iki damar, 23'ü üç damar lez-yonuna sahipti. 33 olgu da ise herhangi bir lez-yon saptanmadı. LCAT ve CETP aktivitesi ile total kolesterol, HDL-K, HDL2-K, LDL-K, li¬poprotein (a), apolipoprotein Al ve B düzey¬lerinde kontrol grubu ile koroner arter hastaları arasında anlamlı farklılıklar bulundu. Koroner arter hastalarında HDL-K ile LCAT aktivitesi arasında anlamlı pozitif korelasyon, HDL-K ile CETP aktivitesi arasında da anlamlı negatif korelasyon olduğu saptandı. Ayrıca, koroner stenozdaki artışla birlikte HDL-K ve HDL2-K düzeylerinin ve LCAT enzim aktivitesinin anlamlı olarak azaldığı, CETP aktivitesinin ise anlamlı olarak arttığı gözlendi. Bu çalışmada, koroner arter hastalarında HDL-K düzeylerini düşük, LCAT enzim akti-vitesini azalmış ve CETP aktivitesini artmış olarak bulmamızın yanısıra, koroner damarlar¬da saptadığımız stenozun LCAT ve CETP akti-viteleriyle anlamlı korelasyon göstermesi de bozulan ters kolesterol taşınımmm koroner ar¬ter hastalığı gelişiminden sorumlu olabileceği görüşünü destekler nitelikte bulundu

Investigation of lecithine: Cholesterol acyltransferase and cholesterol ester transfer protein activities in coronary artery disease

Background and Design.- High density lipoprotein (HDL), lecithine: Cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) are three important factors that play role in the reverse cholesterol transport. Disturbances related to these factors have been proposed to be responsible for the development of coronary artery disease. The subjects angiographically examined (total n= 96) were divided into four groups: those who had >50% luminal stenosis in single (n=20), double (n= 20) and triple (n= 23) coronary arteries and those who had normal (n= 33) coronary arteries. Results.- LCAT and CETP activities and total cholesterol, HDL-C, HDL2-C, low density lipoprotein-cholesterol, lipoprotein (a), apolipoprotein (apo)-AI and apo B levels had been found significantly different between subjects with coronary artery disease and those with normal coronary arteries. In patients with coronary artery disease, there were significant positive correlation between HDL-C and LCAT activity and significant negative correlation between HDL-C and CETP activity. In addition, HDL-C, HDL2-C levels and LCAT activity were significantly decreased and CETP activity was significantly increased as the severity of coronary stenosis increased. Conclusion.- Decreased HDL-C levels might be in connection with decreased LCAT activity and enhanced CETP activity; and as a result it might be concluded that impaired reverse cholesterol transport may be responsible for the development of coronary artery disease.

___

  • 1. Kwiterovich PO. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: A current review. Am J Cardiol 2000; 86(suppl): 5L-10L. 2. Hibino T, Sakuma N, Sato T. Higher level of plasma cholesteryl ester transfer activity from high-density lipoprotein to apo B-containing lipoproteins in subjects with angiographically detectable coronary artery disease. Clin Cardiol 1996; 19: 483-486. 3. Saku K, Zhang B, Ohta T, Arakawa K. Quantity and function of high density lipoprotein as an indicator of coronary atherosclerosis. J AM Coll Cardiol 1999; 33: 436-443. 4. Maron DJ. The epidemiology of low levels of high- density lipoprotein cholesterol in patients with and without coronary artery disease. Am J Cardiol 2000; 21: 11-14. 5. Korhonen T, Savolainen MJ, Koistinen MJ, Ikaheimo M, Linnaluoto MK, Kervinen K, Kesaniemi YA. Association of lipoprotein cholesterol and triglycerides with the severity of coronary artery disease in men and women. Atherosclerosis 1996; 127: 213-220. 6. Hill SA, McQueen MJ. Reverse cholesterol transport-A review of the process and its clinical implications. Clin Biochem 1997; 30: 517-525. 7. Kwiterovich PO. The antiatherogenic role of high-density lipoprotein cholesterol. Am J Cardiol 1998; 82: 13Q- 21Q. 8. Yamashita S, Hirano K, Sakai N, Matsuzawa Y. Molecular biology and pathophysiological aspects of ^plasma cholesteryl ester transfer protein. Biochim Biophys Acta2000; 1529: 257-275. 9. Tall AR. Plasma cholesteryl ester transfer protein and high-density lipoproteins: new insights from molecular genetic studies. J Intern Med 1995; 237: 5-12. 10. Föger B, Chase M, Amar MJ, Vaisman BL, Shamburek RD, Paigen B, Fruchart-Najib J, Paiz JA, Koch CA, Hoyt RF, Brewer HB, Santamarina-Fojo S. Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. JHBIOI Chem 1999; 274: 36912-36920. 11. Yamashita S, Maruyama T, Hirano KI, Sakai N, Nakajima N, Matsuzawa Y. Molecular mechanisms, lipoprotein abnormalities and atherogenicity of hyperalphalipoproteinemia. Atherosclerosis 2000; 152: 271-285. 12. Yamashita S, Sakai N, Hirano K, Arai T, Ishigami M, Maruyama T, Matsuzawa Y. Molecular genetics of plasma cholesteryl ester transfer protein. Curr Opin Lipidol 1997; 8: 101-110. 13. Jonas A. Lecithin cholesterol acyltransferase. Biochim Biophys Açta 2000; 1529: 245-256. 14. Santamarina-Fojo S, Lambert G, Hoeg JM, Brewer HB. Lecithin-cholesterol acyltransferase: role in lipoprotein metabolism, reverse cholesterol transport and atherosclerosis. Curr Opin Lipidol 2000; 11: 267-275. 15. Guerin M, Dolphin PJ, Chapman MJ. Familial lecithin: cholesterol acyltransferase deficiency: further resolution of lipoprotein particle heterogeneity in the low density interval. Atherosclerosis 1993; 104: 195-212. 16. Dobiasova M, Frohlich JJ. Advances in understanding of the role of lecithin cholesterol acyltransferase (LCAT) in cholesterol transport. Clin Chim Acta 1999; 286: 257- 271. 17. Rosseneu M, Peelman F, Verschelde JL, Vanloo B, Labeur C, Tavernier J, Vandekerckhove J. LCAT defects and low HDL levels. Atherosclerosis 1999; 146(Suppl. 1): S9. 18. Kerscher L, Schiefer S, Draeger B, Maier J, Ziegenhorn J. Precipitation methods for the determination of LDL- cholesterol. ClinBiochem 1985; 18: 118-125. 19. Waraick GR, Benderson J, Albers JJ. Dextran sulfate- Mg+2 precipitation procedure for quantitation of high- density lipoprotein cholesterol. Clin Chem 1982; 28: 1379-1388. 20. Olmos JM, Lasuncion MA, Herrera E. Dextran sulfate complexes with potassium phosphate to interfere in determinations of high-density lipoprotein cholesterol. Clin Chem 1992; 38: 233-237. 21. Hitz J, Steinmetz J, Siest G. Plasma lecithin: cholesterol acyltransferase- reference values and effects in xenobiotics. Clin Chem Acta 1983; 133: 85-96. 22. Levy E, Roy C, Lacaille F, Lambert M, Meiser M, Gavino V, Lepage G, Thibault L. Lipoprotein abnormalities associated with cholesteryl ester transfer activity in cystic fibrosis patients: the role of essential fatty acid deficiency. Am J Clin Nutr 1993; 57: 573-579. 23. Romm PA, Green CE, Reagan K, Rackley CE. Relation of serum lipoprotein cholesterol levels to presence and severity of angiographic coronary artery disease. Am J Cardiol 1991; 67: 479-483. 24. Moriyama Y, Okamura T, Inazu A, Doi M, Iso H, Mouri Y, Ishikawa Y, Suzuki H, Iida M, Koizumi J, Mabuchi H, Komachi Y. A low prevalence of coronary heart disease among subjects with increased high-density lipoprotein cholesterol levels, including those with plasma cholesteryl ester transfer protein deficiency. Prev Med 1998; 27: 659-667. 25. Peelman F, Vandekerckhove J, Rosseneu M. Structure and function of lecithin cholesterol acyl transferase: new insights from structural predictions and animal models. Curr Opin Lipidol 2000; 11: 155-160.
  • 26. Solajic-Bozicevic N, Stavljenic A, Sesto M. Lecithin:cholesterol acyltransferase activity in patients with acute myocardial infarction and coronary heart disease. Artery 1991; 18: 326-340. 27. Solajic-Bozicevic N, Stavljenic-Rukavina A, Sesto M. Lecithin-cholesterol acyltransferase activity in patients with coronary artery disease examined by coronary angiography. Clin Investig 1994; 72: 951-956. 28. Atger V, Leclerc T, Cambillau M, Guillemain R, Marti C, Moatti N, Girard A. Elevated high density lipoprotein concentrations in heart transplant recipients are related to impaired plasma cholesteryl ester transfer and hepatic lipase activity. Atherosclerosis 1993; 103: 29-41. 29. Frachart JC, Duriez P. High density lipoproteins and ' coronary heart disease. Future prospects in gene therapy.. Biochimie 1998; 80: 167-172. 30. Huang JM, Huang ZX, Zhu W. Mechanism of high- density lipoprotein subtractions inhibiting copper- catalyzed oxidation of low-density lipoprotein. Clin Biochem 1998; 31: 537-543. ' 31. Vohl MC, Neville TA, Kumarathasan R, Braschi S, Sparks DL. A novel lecithin-cholesterol acyltransferase antioxidant activity prevents the formation of oxidized lipids during lipoprotein oxidation. Biochemistry 1999; 38: 5976-5981. 32. Durrington PN, Mackness B, Mackness MI. Role of HDL in preventing atherogenic modification of LDL. Atherosclerosis 1999; 146(Suppl. 1): S13. 33. Mackness B, Durrington PN, Mackness MI. Human serum paraoxonase. Gen Pharmac 1998; 31: 329-336. 34. Mackness MI, Durrington PN, Ayub A, Mackness B. Low serum paraoxonase: a risk factor for atherosclerotic disease ? Chem Biol Interactions 1999; 119: 389-397. 35.- Goto A, Sasai K, Suzuki S, Fukutomi T, Ito S, Matsushita T, Okamoto M, Suzuki T, Itoh M, Okumura-Noji K, Yokoyama S. Cholesteryl ester transfer protein and atherosclerosis in Japanese subjects: a study based on coronary angiography. Atherosclerosis 2001; 159: 153-163. 36. Bhatnagar D, Durrington PN, Channon KM, Prais HR, Mackness MI. Increased transfer of cholesteryl esters from high density lipoproteins to low density and very low density lipoproteins in patients with angiographic evidence of coronary artery disease. Atherosclerosis 1993; 98: 25-32. 37. Oliveira HCF, Ma L, Milne R, MarcovinaJSM, Inazu A, Mabuchi H, Tall AR. Cholesteryl ester transfer protein activity enhances plasma cholesteryl ester formation: Studies in CETP transgenic mice and human genetic CETP deficiency. Arterioscl Throm Vas 1997; 17: 1045- 1052. 38. Serdar Z, Sarandöl E, Dirican M, Yeşilbursa D, Serdar A, Tokullugil A. Relation between lipoprotein (a) and in vitro oxidation of apolipoprotein B-containing lipoproteins. Clin Biochem 2000; 33: 303-309. 39. Brewer HB. Hypertriglyceridemia: Changes in the plasma lipoproteins associated with an increased risk of cardiovascular disease. Am J Cardiol 1999; 83: 3F-12F. 40. Brites FD, Bonavita CD, De Geitere C, Cloes M, Delfly B, Yael MJ, Fruchart JC, Wikinski RW, Castgro GR. Alterations in the main steps of reverse cholesterol transport in male patients with primary hypertriglyceridemia and low HDL-cholesterol levels. Atherosclerosis 2000; 152: 181-192.