Alkolik yapılan gebe sıçanlar ve yavrularında NK aktivasyonu ile IL-2, IFN-gama ve CD19 etkileşimi

Çalışmamız NK hücrelerinin, alkolik yapılan gebe sıçanlar ve yavrularında IL-2 , IFN-y ve CD 19 ile nasıl etkileşim içinde olduğunu göstermek amacıyla planlandı. Toplam 80 Wistar albino soyu dişi sıçanda yapılan araştırmanın grupları; 1) Kontrol Grubu (K) (n=10) 2) Gavajla eta-nol uygulanan grup (G) (n=10) 3) Kontrol gebe grubu (KG) (n=10) 4) Gavajla etanol uygulanan gebe grubu (GG) (n=10) 5) Kontrol 10 günlük yavru (KY10) (n=10) 6) Kontrol 30 günlük yavru (KY30 ) (n=10) 7) Gavajla etanol uygulanan gebenin 10 günlük yavrusu (GY10) (n=10) 8) Gavajla etanol uygulanan gebenin 30 günlük yavrusu (GY30) (n=10) şeklinde belirlendi. NK değerlerinin [(K: %54.90 ± 10.86 ile G: % 38.40 ± 3.43), (KG: %40.00±2.1 ile GG:%37.1±2.10 )] grupları arasında, 10 ve 30 günlük yavru [(KY10: % 30.2± 2.1 üe GY10: %13.0 ± 0.7), (KY30: %32.28 ± 2.6 ile GY 30: % 20.75 ± 1.2)] grupları arasında anlamlı düşüş olduğu belirlendi. IL-2 değerlerinin [(K: 86.5 ± 1.3 pg/ml ile G:71.0±2.4 pg/ml.) (KG: 65.9 ±1.1 pg/ml ile G.G: 60.9 ±2.1 pg/ml.)] grupları arasında, 10 ve 30 günlük yavru [( KY10: 75.4 ± 3.2 pg/ml ile GY10: 63.0 ± 3.2 pg/ml ), (KY30: 76.0 ± 3.4 pg/ml ile GY30: 70.0 ± 2.6 pg/ml)] grupları arasında anlamlı dü-şüş olduğu görüldü. IFN-y değerlerinin [(K: 1250 ± 29.6 pg/ml ile G: 860 ±27.3 pg/ml ), (KG: 720$pm$13.6 pg/ml ile GG: 570 ± 9.1 pg/ml )] grupları arasında, 10 ve 30 günlük yavru [(KY10: 850 ± 25.0 pg/ml ile GY10: 520 ± 17pg/ml ) (KY30: 900 ± 10 pg/ml ile GY30: 640 ± 16.10 pg/ml )] grupları arasında anlamlı azalma gözlendi. CD19 değerleri [(K: %25.73 ± 3.07 ile G: %23.83 ± 1.6) grupları arasında anlamlılık belirlenemedi. (KG: %23.98 ± 1.7 ile GG: %18.46 ± 1.7) grupları arasında anlamlı düşüş görüldü. 10 ve 30 günlük yavru [(KY10: %11.15 ± 1.7 ile GY10: %32.5 ± 2.0 ) (KY30: %21.35 ± 1.2 ile GY30: %30.8 ± 1.8)] grupları arasında anlamlı artış belirlendi. Gavaj yöntemiyle alkol uygulanan dişi sıçanlarda ve bunların gebelik döneminde kontrol grubuna göre NK aktivitesinin anlamlı olarak azaldığı, buna paralel olarak CD-19, IL-2 ve IFN-y düzeyinde de azalma olduğu görüldü. Gebelik döneminde alınan alkolün, 10 günlük yavrularda NK, IL-2, IFN-y düzeyinde, 30 günlük yavrulara göre daha güçlü supresif etkisi olduğu belirlendi. Gerek 10 gerekse 30 günlük yavrularda CD 19 düzeyinde anlamlı artışın olduğu gözlendi. Gebelik sürecinde annede gelişen özel immün tolerans sistemlerinin teratojenik faktörlerin başında gelen alkol ile değişime uğradığı sonucuna varıldı.

The NK activation and the interaction of the parameters IL-2, IFN-gamma and CD19 in the alcoholic pregnant rats and their offspring

Background.- Our study aims to show how the NK cells interact with the parameters of IL-2, IFN-y and CD 19 in the alcoholic pregnant rats and their offspring. Several experimental animal models have been described for the study that was carried out on a total number of 80 Wistar albino female rats. Design.- In our study, rats were divided into 8 groups; 1) Control group (K) (n=10) 2) Group that received ethanol through gavage (G) (n=10) 3) Control pregnant group (KG) (n=10) 4) Pregnant group that received ethanol through gavage (GG) (n=10) 5) Control offspring (10 days old) (KY10) (n=10) 6) Control offspring (30 days old) (KY30) (n=10) 7) 10-day-old offspring of pregnant rats that received ethanol through gavage (GY10) (n=10) 8) 30 day old off-spring of pregnant rats that received ethanol through gavage (GY30) (n=10). Results.- Data from this study show that there has been a considerable decrease in the NK values the successive groups [(K: % 54.90±10.86 and G: % 38.40±3.43), (KG: % 40.00±2.1 and GG: % 37.1 ±2.10)] and the groups of 10 to 30 day old offspring of rats [(KY10: %30.2±2.1 and GY10: %13.0±0.7), (KY30: %32.28±2.6 and GY30: %20.75± 1.2)] respectively. A significant decrease is observed in the IL-2 values between the consecutive groups [(K: 86.5±1.3 pg/ml and G: 71.0±2.4 pg/ml), (KG: 65.9±1.1 pg/ml and GG: 60.9±2.1 pg/ml )] and the groups of 10 to 30 day old offspring of rats [(KY10: 75.4±3.2 pg/ml and GY10: 63.0±3.2 pg/ml), (KY30: 76.0±3.4 pg/ml and GY30: 70.0±2.6 pg/ml)] respectively. The IFN-y values indicated a considerable decrease among the successive groups [(K: 1250±29.6 pg/ml and G: 860±27.3 pg/ml) (KG: 720±13.6 pg/ml and GG: 570±9.1 pg/ ml)] and the groups of 10 to 30 day old off-spring of rats [(KY10: 850±25.0 pg/ml and GY10: 520±17 pg/ml) (KY30: 900±10 pg/ml and GY30: 640±16.10 pg/ml) ] respectively. No significant changes were observed in the CD-19 values between the groups [(K: % 25.73±3.07 and G: % 23.83H.6) while there was a significant decrease between the groups (KG: %23.98±1.7 and GG: % 18,46± 1.7)] The CD-19 values displayed a considerable increase among the consecutive groups of [(KY10: %11.15±1.7 and GY10: % 32.5$pm$2.0) (KY30: %21.35±1.2 and GY30: % 30.8±1.8)] respectively. Conclusions.- It has been observed that in the female pregnant rats that received alcohol through gavage, the NK activity falls considerably according to the control group and in parallel to that there is a decrease in the levels of the parameters CD 19, IL-2 and IFN-y. Compared to the 30-day old-offspring, a more suppressive effect was observed in the NK, IL-2 and IFN-y levels of the 10 day old offspring of the rats that received alcohol during the period of pregnancy. Also in the CD-19 level, a significant increase is observed both in 10 and 30 day old offspring. These results point out the fact that the teratogenic factors like alcohol are primarily responsible for the profound and harmful effects on the special immune tolerance systems that have developed through the period of pregnancy of the mother.

___

  • 1. Lanzavechia A. Antigen spesific interaction between T and B cells. Nature 1985; 314: 537-539. 2. Szekeres-Bartho J, Faunt Z. The expression of a progesterone-induced immunomodulary protein in pregnancy lymphoctes. Clin Exp Res 1995; 19: 221-227. 3. Imrie HJ. Reduction in erythrocyte complemet receptor 1 (CD1,CD35) and decay accelerating factor (DAF,CD55) during normal pregnancy. J Reprod Immunol 1996; 31: 221-227. 4. Gala RR. Shevach EM. Influence of PRL and Growth hormone on the activation of draw mouse lymphocytes in vivo. Proc Soc Exp Biol Med 1993; 204: 224-230. 5. Uksila A. Sex hormones, immune responses mechanism of sex hormone action. Am J Path 1990; 531-551. 6. Chao TC. Female sex hormones and immune system. Chang Keng I Hsuuch 1996; 19: 95-106. 7. Seelig LL. Jr. Steven WM. Stewart GL. Effects of maternal ethanol consumption on the subequent development of immunıty to Trichinella spiralis in rat neonates. Alcohol Clin Exp Res 1996; 20: 514-522. 8. Giberson PK, Blakley BR. Effect of postnatal etanol expousure on expression of differentiation antigens of murine splenic lymphocytes. Alcohol Clin Exp Res 1994; 18: 21-28. 9. Weinberg J, Jerrells TR. Suppression of immune responsiveness: sex dıfferences in prenatal ethanol effects. Alcohol Clin Exp Res 1991; 15: 525-531. 10. Norman DC, Chang MP, Wong, CM.Branch BJ, Castle S, Taylor AN. Changes with age in the proliferative response of splenic T cells from rats exposed to ethanol in utero. Alcohol Clin Exp Res 1991; 15: 428-432. 11. Jerrells TR. Immunodeficiency associated with ethanol abuse. Adv Exp Med Biol 1991; 288: 229-236. 12. Chang MP, Yamaguchi DT, Yeh M, Taylor AN, Norman DC. Mechanism of the impaired T cell proliferation in adult rats exposed to alcohol in utero. Int J Immunopharmacol 1994; 16: 345-357. 13. Kuhnert M; Strohmeier R, Stegmullerm Halberstadt E. Changes in lymphocyte subsets during normal pregnancy. Eur J Obstet Gynecol Reprod Biol 1998; 76: 147-151. 14. Jokhi PP, King A, Loke YW. Cytokine production and cytokine receptor expression by cells of the human first trimester placental - uterine interface. Cytokine 1997; 9: 126-137. 15. Quenby S, Bates M, Doing T, Lewis BJ, Jones DI, Johnson PM, Vince G. Pre-implantation endometrial leukocytes in - women with recurrent miscarrige. Hum Reprod 1999; 14: 2386-2391. 16. Steven WM, Stewart GL, Seelin LL. Effects of levamisole on ethanol - induced suppression of lactational immune transfer in rats. Alcohol Clin Exp Res 1993; 17: 958-962. 17. Gallucci RM, Meadows GG. Ethanol consumption suppresses the IL-2 induced proliferation of NK cells. Toxicol Appl Pharmacol. 1996; 138: 90-97. 18. Wu WJ, Wolcott RM, Pruett SB. Ethanol decreases the number and activity of splenic natural killer cells in a mouse model for binge drinking. J Pharmacol Exp Ther 1994; 271: 722-729. 19. Laso FJ, Lapenta P, Madruga J, San-Miquel JF. Alterations in tumor necrosis factor alpha , interferon - gamma and IL - 6 production by natural killer cell - enriched peripheral blood mononuclear cells in chronic alcoholism; relationship with liver disease and ethanol intake. Alcohol Clin Exp Res 1997; 21: 1226-1231. 20. Norton S. Basic animal research. Rec Dev Alcohol 1991; 9: 95-115. 21. Minami Y, Kono T. The IL-2 receptor complex: Its structure, function and target genes. Ann Rev Immunol 1993; 11: 245-268. 22. Trinchieri G, Wysocka A, D'Andrea. Natural killer cell stimulatory factor (NKSF) or IL-12 is a key regulator of immune response and inflammation. Prog Growth Factor Res 1993; 4: 355-368. 23. Burton DR, Woof JM. Human antibody effector function. Adv Immunol 1992; 51: 1-84. 24. Gallucci RM. Ethanol consumption reduces the cytolytic activity of lymphokine -activated killer cells. Alcohol Clin Exp Res 1995; 19: 402-409. 25. Ben-Eliyahu S, Page GG, Yirmiya R, Taylor AN. Acute alcohol intoxication suppresses natural killer cell activity and promotes tumor metastasis. Nat Med 1996; 2: 457-460. 26. Ochshorn-Adelson M, Bodner G. Effects of ethanol on human natural killer cell activity: in vitro and acute low dose in vivo studies. Alcohol Clin Exp Res 1994; 18: 1361-1367. 27. Chao KH. Decidual natural killer cytotoxicity decreased in normal pregnancy but not in unembriyonic pregnancy and recurrent spontaneous abortion. Am J Reprod Immun 1995; 34: 274-280. 28. Wu WJ, Wolcott RM, Pruett SB. Ethanol decreases the number and activity of splenic natural killer cells in a mouse model for binge drinking. J Pharmacol Exp Ther 1994; 271: 722-729. 29. Abul K, Lichtman AH, Pober JS. Effector mechanisms of T cell - mediated immune reactions. Cell Molec Immunol 1994; 13: 262-276. 30. Steven WM, Barron RA, Stewart GL, Seeling LL. The effects of maternal ethanol consumption on the distribution of leukocyte subsets in the lactating mammary gland of rats. Alcohol Alcohol 1991; 26: 615-625. 31. Herberman RB, Reynolds CW, Ortaldo J. Mechanisms of cytotoxicity by natural killer cells. Ann Rev Immunol 1986; 4: 651-680. 32. Versteeg R. NK cells and T cells mirror images. Immunology Today 1992; 13: 244-247. 33. Taylor AN, Ben Eliyahu S. Actions alcohol on immunity and neoplasia in fetal alcohol exposed and adult rats. Alcohol sup 1993; 2: 69-74. 34. Na HR, Seeling LL. Effect of maternal ethanol consumption on in vitro tumor necrosis factor, IL-6 and IL-2 production by rat milk and blood leukocytes. Alcohol Clin Exp 1994; 18: 398-402. 35. Chang MP, Yamaguchi DT. Mechanism of the impaired T cell proliferation in adult rats exposed to alcohol in utero. J Immunopharmacol 1994; 16: 345-357. 36. Kos FJ. Regulation of adaptive immunıty by NK cells. Immunol Res 1998; 17: 303-312. 37. Cook RT, Li F, Vandersteen D. Ethanol and Natural Killer Cells. 1. Activity and immunophenotype in alcoholic humans. Alcohol Clin Exp Res 1997; 21: 974-980. 38. Shinkai S, Konishi M, Shephard RJ. Aging, exercise, training and the immune system. Exerc Immunol Rev 1997; 3: 68-95.