NEONİKOTİNOİD PESTİSİTLERİN HİSTOPATOLOJİK VE GENOTOKSİK ETKİLERİ

ÖZETPestisitler, toksik etkileri ve birikimleri nedeniyle insan ve çevre sağlığı için en tehlikeli kirleticilerdenbiridir. Bu derlemede günümüzde yaygın olarak kullanılan pestisit gruplarından neonikotinoidlerininsanlar üzerindeki etkilerine dair elde edilen verilerin değerlendirilerek gelecektekiçalışmalar için özetlenmesi amaçlanmıştır.Mevcut literatür bilgileri, Kafkas Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, ZoolojiEkotoksikolojive Moleküler Biyoloji-Genetik Anabilim Dalları Laboratuvarları ve Tıp Fakültesi,Patoloji Anabilim Dalı Laboratuvarındaki çalışmalar ışığında gözden geçirilerek derleme halindedüzenlenmiştir.Canlıda oluşan serbest radikaller, lipit, karbonhidrat, protein ve nükleik asit gibi biyomolekülleriya da hücresel komponentleri etkileyip yeni serbest radikalleri oluşturur. Bu da hücrede yapısalhasarlar meydana getirerek metabolik değişikliklere yol açmaktadırlar. Bu histopatolojik vegenotoksik derlemede anlatılan çalışmalar çerçevesinde neonikotinoidlerin omurgalılarda sonderece toksik oldukları ve omurgalılarda hızlı metabolize olamadıklarından akut toksisitelerininyüksek olduğu ortaya konmuştur. Gelişmiş tekniklerin kullanıldığı ileri düzeydeki bütün araştırmalar,histolojik ve genotoksik düzeyde temel verilere dayanarak gerçekleştirilebilir ve histopatolojikve genotoksik araştırma yöntemleri özel alanlardaki araştırmaların temel anahtarıdır.

The Histopathological and Genotoxic Effects of Neonicotinoid Pesticides

Pesticides are one of the most hazardous pollutants for human and environmental health due to their toxic effects and accumulation. In this review, it was aimed to summarize the literature which can be a source for future studies by evaluating the data about histological and genotoxic effects of neonicotinoids, one of the insecticide groups commonly used today, on vertebrates. The available literatural information arranged as compilation by revised in accordance with the works in the Kafkas University, Faculty of Arts and Sciences, Department of Biology, ZoologyEcotoxicology and Molecular Biology-Genetics Laboratories and Medicine Faculty, Pathology Laboratory. Free radicals occured in vivo create new free radicals by affecting biomolecules such as lipids, carbohydrates, proteins, and nucleic acids and cellular components. This also leads to metabolic changes by causing structural damage in the cell. It was demonstrated that neonicotinoids are extremely toxic to vertebrates and the acute toxicity of neonicotinoids is high because they cannot metabolize rapidly in vertebrates within the context of the studies described in this histopathological and genotoxic review. All further investigations using advanced techniques can be performed based on histological and genotoxic levels and histopathological and genotoxic research methods are the fundamental key of researches in specific fields.

___

  • Bedir A, Bilgici B, Yurdakul Z, Gürses BŞ, Alvur M. The comparison of mikro FADU and comet methods in DNA damage analysis. J Turk Clin Biochem. 2004;97-103.
  • Fenech M, Crott WJ. Micronuclei, nucleoplasmic bridges and nuclear buds induced in folic acid deficient human lymphocytesevidence for breakage-fusion-bridge cycles in the cytokinesis-block micronucleus assay. Mutat Res. 2002;504:131-136.
  • Hagmar L, Brogger A, Hansteen IL, Heim S, Högstedt B, Knudaen L, Lambert B, Linnainmaa K, Mitelman F, Nordenson I, Reuterwall C, Salomaa S, Skerfving S, Sorsa M. Cancer risk in human predicted by increased levels of chromosomal aberrations in lymphocytes: Nordic study group on the health risk of chromosome damage. J Cancer Res. 1994;54:2919-2922.
  • Tucker JD, Auletta A, Cimino MC, Dearfıeld KL, Jacobsonkram D, Tice RR, Carrano AV. Sister-Chromatid Exchange: Second Report of the Gene-Tox Program. Mutat Res. 1993;297:101-180.
  • Green T, Toghill A, Lee R, Waechter F, Weber E, Noakes, J. Thiamethoxam Induced Mouse Liver Tumors and Their Relevance to Humans Part 1: Mode of Action Studies in the Mouse. Toxicological Sciences. 2005;86(1):36–47.
  • Kocaman, AY, Topaktas M. In vitro evaluation of the genotoxicity of acetamiprid in human peripheral blood lymphocytes. Environ Mol Mutagen. 2007;48:483-490.
  • Peluso M, Merlo F, Munnia A, Bolognesi C, Puntoni R, Parodi S. 32P-postlabeling detection of DNA adducts in peripheral white blood cells of greenhouse floriculturists from Western Liguria, Italy. Cancer Epidemiology Biomarkers and Prevention. 1996;5(5):361- 369.
  • Rupa DS, Rita P, Reddy RR, Reddi OS. Screening of chromosomal aberrations and sister chromatid exchanges in peripheral lymphocytes of vegetable garden workers. Human and Experimental Toxicology. 1988;7:333-336.
  • Van Maele-Fabry G, Duhayon S, Lison D. A systematic review of myeloid leukemias and occupational pesticide exposure. Cancer Causes and Control. 2007;5:457–478.
  • Bull S, Fletcher K, Boobis, AR, Battershill JM. Evidence for genotoxicity of pesticides in pesticide applicators: a review. Mutagenesis, 2006;21(2):93– 103.
  • Rupa DS, Reddy PP, Sreemannarayana K, Reddi OS. Frequency of sister chromatid exchange in peripheral lymphocytes of male pesticide applicators. Environ Mol Mutagen. 1991;18:136-138.
  • Demsia G, Vlastos D, Goumenou M, Matthopoulos DM. Assessment of the genotoxicity of imidacloprid and metalaxyl in cultured human lymphocytes and rat bone-marrow. Mutat Res. 2007;634:32–39.
  • Kılınç A. Neonikotinoid grubu insektisidlerin sitotoksik etkilerinin araştırılması. Yüksek Lisans Tezi, 81 s. İstanbul Üniversitesi, Sağlık Bilimleri Enstitüsü / Farmasötik Toksikoloji Anabilim Dalı, 2016.
  • Kocaman AY, Rencüzoğulları E, Topaktaş M. In vitro investigation of the genotoxic and cytotoxic effects of thiacloprid in cultured human peripheral blood lymphocytes. Environ Toxicol. 2014;29(6): 631-41.
  • Costa C, Silvari V, Melchini A, Catania S, Heffron JJ, Trovato A, De Pasquale R. Genotoxicity of imidacloprid in relation to metabolic activation and composition of the commercial product. Mutat Res. 2009;672:40–44.
  • Cavas T, Cinkilic N, Vatan O, Yilmaz D, Coskun M. In vitro genotoxicity evaluation of acetamiprid in CaCo-2 cells using the micronucleus, comet and gamma H2AX foci assays. Pestic Biochem Phys. 2012;104: 212-217.
  • Rasgele PG, Oktay M, Kekecoglu M, Muranli FDG. The histopathological investigation of liver in experimental animals after shortterm exposures to pesticides. Bulg J Agric Sci. 2015;21:446-453.
  • Arfat Y, Mahmood N, Tahir MU, Rashid M, Anjum S, Zhao F, Li D-J, Sun Y-L, Hu L, Zhihao C, Yin C, Shang P, Qian A-R. Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicology Reports 1. 2014;554–561 http://dx.doi.org/10.1016/j. toxrep.2014.08.004
  • Lonare M., Kumar M, Raut S, Badgujar P, Doltade S, Telang, A. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochemistry International. 2014;78:122–129.
  • Bhardwaj S., Srivastava MK., Kapoor U, Srivastava LP. A 90 days oral toxicity of imidacloprid in female rats: Morphological, biochemical and histopathological evaluations. Food and Chemical Toxicology. 2010;48(5):1185-1190.
  • Kumar A, Tomar M, Kataria SK. Effect of sub-lethal doses of imidacloprid on histological and biochemical parameters in female albino mice. IOSR-JESTFT. 2014;8(1): 09-15.
  • Miller-Morey JS, Dolah FMV. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp Biochem Physiol - Part C: Toxicol Pharmacol. 2004;138:493-505.
  • Fontanetti CS, Cristofoletti CA, Pinheiro TG, Souza TS, Pedro-Ester J. Microscopy: Science, technology, applications and education. In Microscopy as a Tool in Toxicological Evaluations (eds. A MéndezVilas, J Díaz). Formatex Research Center: Zurbaran, Spain, 2014. p. 1001–1007.
  • Schwaiger J, Wanke R, Adam S, Pawert M, Honnen W, Triebskorn R. The use of histopathological indicators to evaluate contaminantrelated stress in fish. J Aqua Ecosyst Stress Recovery. 1997;6:75-86.
  • van Lexmond MB, Bonmatin J-M, Goulson D, Noome DA. Worldwide integrated assessment on systemic pesticides, Global collapse of the entomofauna: exploring the role of systemic insecticides. Environ Sci Pollut Res. 2015;22:1-4.
  • Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C, et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut R. 2015;22(1):5-34.
  • Morozov VN, Kanev IL. Knockdown of Fruit Flies by Imidacloprid Nanoaerosol. Environ Sci Technol. 2015;49(20):12483-12489.
  • PANNA (Pestcides Action Network North America). Pesticides and Honey Bees: State of the Science. 49 Powell Street, Suite 500, San Francisco, CA 94102, 2012. pp. 25+2 (https://www.panna.org/ sites/default/files/Bees&Pesticides_SOS_FINAL_May2012.pdf Access date: 21.07.2016).
  • Cressey D 2013. Europe debates risk to bees. Nature. 2013;496(7446):408.
  • Osborne JL. Ecology: Bumblebees and pesticides. Nature. 2012;491(7422):43-45.
  • Gill RJ, Ramos-Rodriguez O, Raine NE. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature. 2012;491(7422):105–108.
  • Jena B, Kaul CL, Ramarao P. Genotoxicity Testing, a regulatory requirement for drug discovery and development: Impact of ICH Guidelines. Indian J Pharmacol. 2002;34:86-99.
  • Kramer PJ. Genetic Toxicology. J Pharm Pharmacol. 1998;50:395- 405.
  • Ribas G, Surrales J, Carbonell E, Xamena N, Creus A, Marcos R. Genotoxicity of the herbicides alachlor and maleic hydrazide in cultured human lymphocytes. Mutagenesis. 1996;11:221-227.
  • Corringer PJ, Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol. 2000;40:431-458.
  • Matsuda K, Shimomura M, Ihara M, Akamatsu M, Sattelle DB. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci Biotech Biochem. 2005;69:1442-1452.
  • Thany SH. Agonist actions of clothianidin on synaptic and extrasynaptic nicotinic acetylcholine receptors expressed on cockroach sixth abdominal ganglion. Neurotoxicology. 2009;30:1045-1052.
  • Tomizawa M, Millar NS, Casida JE. Pharmacological profiles of recombinant and native insect nicotinic acetylcholine receptors. Insect Biochem Molec. 2005;35:1347-1355.
  • Nauen RU, Ebbinghaus-Kintscher U, Schmuck R. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag Sci. 2001;57:577-586.
  • Honda H, Tomizawa M, Casida JE. Insect nicotinic acetylcholine receptors: neonicotinoid binding site specificity is usually but not always conserved with varied substituents and species. J Agric Food Chem. 2006;54:3365-3371.
  • Liu Z, Dai Y, Huang G, Gu Y, Ni J, Wei H, Yuan S. Soil microbial degradation of neonicotinoid insecticides imidacloprid, acetamiprid, thiacloprid and imidaclothiz and its effect on the persistence of bioefficacy against horsebean aphid Aphis craccivora Koch after soil application. Pest Management Science. 2011;67:1245-1252.
  • Fishel FM 2009. Pesticide Toxicity Profile: Neonicotinoid Pesticides. IFAS Extension, University of Florida, pp. 3. (http://edis.ifas. ufl.edu/pdffiles/PI/PI11700.pdf Access date: 09.11.2016)
  • Eddleston M. Pesticides. Medicine. 2016;44:3.
  • Johnson R, Corn ML. Bee Health: The Role of Pesticides. Congressional Research Service, February 17, 2015. pp. 43.
  • USEPA. “Clothianidin fact sheet". U.S. Environmental Protection Agency. Retrieved 14 October 2013.
  • Bradbury, SP 2012. Office of Pesticide Programs, letter to Peter T. Jenkins, Center for Food Safety and International Center for Tech nology Assessment, July 17, 2012.
  • Casida JE, Gammon DE, Glickman AH, Lawrence LJ, Quistad GB. Why insecticides are more toxic to insect than people: the unique toxicology of insects. J Pestic Sci. 2004;29:81- 86.
  • Mencke N, Jeschke P. Therapy and prevention of parasitic insects in veterinary medicine using imidacloprid. Curr Top Med Chem. 2002;2:701-715.
  • Doğan A. Veteriner Toksikoloji. Eser Press, Saraybosna Avenue., Altunalem Site, Block D, No: 69/B, Yakutiye-Erzurum, 2016. p. 694.
  • Sabra FS, Mehana E-S.E-D. Pesticides Toxicity in Fish with Particular Reference to Insecticides. AJAFS. 2015;03(01):40-60.
  • Roberts, JR, Reigart JR. Recognition and Management of Pesticide Poisonings. 7. Edit., Office of Pesticide Programs, U.S. Environmental Protection Agency (EPA), 1200 Pennsylvania Avenue, NW (7506P) Washington, DC 20460, 2013. p. 272.
  • Grimm M, Sedy K, Süßenbacher E, Riss A. Existing Scientific Evidence of the Effects of Neonicotinoid Pesticides on Bees. Directorate General for Internal Policies Policy Department A: Economic and Scientific Policy, 2012. pp. 28.
  • Watts M. Pesticide Action Network Asia and the Pacific (PAN AP) pesticides-factsheet-hhps-neonicotinoids. P.O. Box 1170, 10850 Penang, Malaysia, 2011. pp. 6.
  • Singh DK. Applied Entomology: Toxicology of Insecticides. 2007. pp. 70. (http://nsdl.niscair.res.in/jspui/bitstream/123456789/226/1/Toxicology%20of%20Insecticides.pdf, Access date: 09.05.2016)
  • SEP (Science for Environment Policy). European Commission DG Environment News Alert Service, edited by SCU, The University of the West of England, Bristol, 2015 (http://ec.europa.eu/ environment/integration/research/newsalert/pdf/neonicotinoid_ and_fipronil_harm_fish_and_birds_402na5_en.pdf, Access date: 23.05.2016).
  • Pisa LV, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs CA, Goulson D, et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut R. 2015;22:68-102.
  • Gibbons D, Morrissey C, Mineau P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut R. 2015;22:103-118.
  • Rasgele PG. Abnormal sperm morphology in mouse germ cells after short-term exposures to acetamiprid, propineb, and their mixture. Sperm Morphology Following Acm and Pro Exposure: Arch Ind Hyg Toxicol. 2014;65:47-56.
  • Boily M, Sarrasin, B, DeBlois C, Aras P, Chagnon M. Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: Laboratory and field experiments. Environ Sci Pollut R. 2013;20:5603-5614.
  • Badgujar PC, Jain SK, Singh A, Punia JS, Gupta RP, Chandratre GA. Immunotoxic effects of imidacloprid following 28 days of oral exposure in BALB/c mice. Environ Toxicol Pharmacol. 2013;35:408– 418.
  • Calderón-Segura ME, Gómez-Arroyo S, Villalobos-Pietrini R, Martínez-Valenzuela C, Carbajal-López Y, Calderón-Ezquerro MdC, et al. Evaluation of Genotoxic and Cytotoxic Effects in Human Peripheral Blood Lymphocytes Exposed In Vitro to Neonicotinoid Insecticides News. J Toxicol. 2012;1-11.
  • Connon RE, Geist J, Pfeiff J, Loguinov AS, D’Abronzo L, Wintz H, Vulpe CD, Werner I. Molecular Analysis of Neonicotinoid Insecticides Mixture Toxicity in the Marine Mussel (Mytilus galloprovincialis). Fifteenth International Symposium on Pollutant Responses in Marine Organisms (PRIMO15): Mar Environ Res. 2010;69:3-16.
  • Gervais JA, Luukinen B, Buhl K, Stone D. Imidacloprid Technical Fact Sheet. National Pesticide Information Center, 2010. Retrieved 12 April 2012 (http://npic.orst.edu/factsheets/imidagen.html Access date: 03.10.2016).
  • Sarkar MA, Roy S, Kole R, Chowdhury. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag Sci. 2001;57:598-602.
  • Kačmár P, Pistl J, Mikula I. Immunotoxicology and veterinary medicine. Acta Vet Brno. 1999;68:57-79.
  • James KL, Randall NP, Walters KFA, Haddaway NR, Land M. Evidence for the Effects of neonicotinoids used in arable crop production on non-target organisms and concentrations of residues in relevant matrices: a systematic map protocol. Environ Evid. 2016;5(22):1-9.
  • Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 2013;339:1608- 1611.
  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345-353.
  • Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc Royal Soc B: Biol Sci. 2007;274(1608): 303–313.
Bozok Tıp Dergisi-Cover
  • ISSN: 2146-4006
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2015
  • Yayıncı: Bozok Üniversitesi
Sayıdaki Diğer Makaleler

PANKREATİTTE ERİTROSİT DAĞILIM GENİŞLİĞİ (RDW)’NİN MORTALİTEYİ ÖNGÖRMEDEKİ DEĞERLİLİĞİ

Sinan KARACABEY, Erkman SANRI

OROFARİNGEAL TULAREMİ OLGU

Fatma KESMEZ CAN, Emine PARLAK, Zülküf KAYA, Selma SEZEN

AKCİĞER KANSERLİ HASTALARDA SERUM GALEKTİN 1 VE 3 DÜZEYLERİNİN, TANISAL VE PROGNOSTİK DEĞERİ Diagnostic and Prognostic Value of Serum Galectin-1 and Galectin-3 Levels in Lung Cancer Patients

Özlem ERÇEN DİKEN, Yusuf AYDEMİR, Emre DEMİR

YENİ KURULAN BOZOK ÜNİVERSİTESİ TIP FAKÜLTESİ KALP VE DAMAR CERRAHİSİ KLİNİĞİMİZİN ERKEN DÖNEM SONUÇLARI

Ferit ÇİÇEKÇİOĞLU, Kıvanç ATILGAN, Çiğdem ÜNAL KANTEKİN, Ertan DEMİRDAŞ

APENDİKS’İN KARSİNOİD TÜMÖRÜ: 3981 APENDEKTOMİ VAKASININ DEĞERLENDİRİLMESİ

Yavuz ALBAYRAK, Ayetullah TEMİZ, Sevilay AKALP ÖZMEN

TROMBÜS OLDUKÇA BÜYÜKTÜ: ÖNCE ASPİRASYON YAPILMALI MIYDI ?

Kerim ESENBOĞA

ÇOÇUKLUK ÇAĞI FLEKSİBL FİBEROPTİK BRONKOSKOPİ DENEYİMLERİMİZİN DEĞERLENDİRİLMESİ

Yasemin AKIN, Adem YAŞAR, Sedat ÖKTEM, Selim ASAROĞLU, Belma YAŞAR

KOKSİDİNİA’LI OLGULARDA CERRAHİ TEDAVİ VE SONUÇLARI

Birol ÖZKAL

APENDİKS’İN KARSİNOİD TÜMÖRÜ: 3981 APENDEKTOMİ VAKASININ DEĞERLENDİRİLMESİ Carcinoid Tumor Of Appendix: Evaluatıon of 3981 Appendectomy Cases

Ayetullah TEMİZ, Yavuz ALBAYRAK, Sevilay AKALP ÖZMEN

KRONİK BEL AĞRISININ EKONOMİK MALİYETİ

Afitap İÇAĞASIOĞLU, Huriye ARAS, Sema HALİLOĞLU, Esra SELİMOĞLU, Hatice S. BAKLACIOGLU, Yasemin YUMUŞAKHUYLU