Protective Effect of Taurine and Curcumin on Lung Toxicity of Bisphenol A in Rats

Protective Effect of Taurine and Curcumin on Lung Toxicity of Bisphenol A in Rats

Bisphenol A (BPA) is an endocrine disruptor chemical that is frequently used in industry. Taurine is a low molecular weight organic compound in living organisms. Curcumin is a yellow colored bioactive compound of turmeric with antioxidant properties. In this study, the protective effects of taurine and curcumin on the histopathological changes, antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione peroxidase (GPx)] and malondialdehyde (MDA) levels that BPA may cause in the lung tissue of rats were investigated. Rats were divided into 7 groups. 1st group: control group, 2nd group: oil group, 3rd group: taurine (100 mg/kg day) treated group, 4th group: curcumin (100 mg/kg day) treated group, 5th group: BPA (130 mg/kg day) treated group group, 6th group: BPA plus taurine treated group, 7th group: BPA plus curcumin treated group. After the application by gavage for 4 weeks, a statistically significant increase was observed in the MDA levels in the lung tissues of the rats when the BPA treated group was compared with the control group, while a statistically significant decrease was observed in the antioxidant enzyme activities (SOD, CAT, GST, GPx). When the groups treated with BPA plus taurine, BPA plus curcumin were compared with the group treated with BPA, a decrease was observed in the MDA levels in the lung tissues of the rats, while a statistically significant increase was observed in SOD, CAT, GST and GPx enzyme activities. In histopathological examinations, it was determined that while BPA caused cell infiltration, hemorrhage, atrophy and emphysema in the lung tissue of rats, taurine and curcumin reduced these pathological changes.

___

  • A. Roncaglioni, N. Piclin, M. Pintore, and E. Benfenati, “Binary Classification Models for Endocrine Disrupter Effects Mediated through the Estrogen Receptor,” SAR QSAR Environ. Res., vol. 19, pp. 697–733, Oct. 2008, doi:10.1080/10629360802550606.
  • R. Garcia Morales, M. Rodríguez Delgado, K. Gomez Mariscal, C. Orona Navar, C. Hernandez Luna, E. Torres, R. Parra, D. Cárdenas-Chávez, J. Mahlknecht, and N. Ornelas-Soto, “Biotransformation of Endocrine-Disrupting Compounds in Groundwater: Bisphenol A, Nonylphenol, Ethynylestradiol and Triclosan by a Laccase Cocktail from Pycnoporus Sanguineus CS43,” Water Air Soil Pollut., vol. 226, no. 8, pp. 251, Jul. 2015, doi: 10.1007/s11270-015-2514-3.
  • R. C. Gupta, Biomarkers in Toxicology. 1st ed. Academic Press, Cambridge, Massachusetts, United States, pp. 459, Jan. 2014.
  • S. Flint, T. Markle, S. Thomson, and E. Wallace, “Bisphenol A Exposure Effects and Policy; A Wildlife Perspective,” J. Environ. Manage., vol. 104, pp. 19–34, Apr. 2012, doi:10.1016/j.jenvman.2012.03.021.
  • Y. Huang, C. Wong, J. Zheng, H. Bouwman, R. Barra, B. Wahlstrom, L. Neretin, and M. Hong, “Bisphenol A (BPA) in China: A Review of Sources, Environmental Levels, and Potential Human Impacts,” Environ. Int., vol. 42, pp. 91–99, Jul. 2012, doi: 10.1016/j.envint.2011.04.010.
  • A.V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, “Bisphenol-A: An Estrogenic Substance is Released from Polycarbonate Flasks during Autoclaving,” Endocrinology, vol. 132, no. 6, pp. 2279–2286, Jul. 1993, doi: 10.1210/en.132.6.2279.
  • J. Lopez-Cervantes and P. Paseiro-Losada, “Determination of Bisphenol A in, and Its Migration from, PVC Strechfilm Used for Food Packaging,” Food Addit. Contam., vol. 20, no. 6, pp. 596–606, 2003, Jul. doi: 10.1080/0265203031000109495.
  • Y. B. Wetherill, L. N. Fisher, A. Staubach, M. Danielsen, R. de Vere White, and K. Knudsen, “Xenoestrogen Action in Prostate Cancer: Pleiotropic Effects Dependent on Androgen Receptor Status,” Cancer Res., vol. 65, no. 1, pp. 54–65, Jan. 2005, doi:10.1158/0008-5472.54.65.1.
  • J. D. Meeker, A. M. Calafat, and R. Hauser, “Urinary Bisphenol A Concentration in Relation to Serum Thyroid and Reproductive Hormones in Men from an Infertility Clinic,” Environ. Sci. Technol., vol. 44, no. 4, pp. 1458–1463, Feb. 2010, doi: 10.1021/es9028292.
  • L. F. Doherty, J. G. Bromer, Y. Zhou, T. S. Aldad, and H. S. Taylor, “In Utero Exposure to Diethylstilbestrol (DES) or Bisphenol-A (BPA) Increases EZH2 Expression in the Mammary Gland: An Epigenetic Mechanism Linking Endocrine Disruptors to Breast Cancer,” Horm. Cancer, vol. 1, no. 3, pp. 146–155, Jun. 2010, doi:10.1007/s12672-010-0015-9.
  • E. Clayton, M. Todd, J. B. Dowd, and A. E. Aiello, “The Impact of Bisphenol A and Triclosan on Immune Parameters in the U.S. Population, NHANES 2003-2006,” Environ. Health Perspect., vol. 119, no. 3, pp. 390–396, Mar. 2011, doi: 10.1289/ehp.1002883.
  • T. Yoshida, M. Horie, Y. Hoshino, and H. Nakazawa, “Determination of Bisphenol A in Canned Vegetables and Fruitby High Performance Liquid Chromatography,” Food Addit. Contam., vol. 18, no. 1, pp. 69–75, Jan. 2001, doi: 10.1080/026520301446412.
  • Y. Niu, J. Zhang, Y. Wu, and B. Shao, “Analysis of Bisphenol A and Alkylphenols in Cereals by Automated On-Line Solid-Phaseextraction and Liquid Chromatography Tandem Massspectrometry,” J. Agric. Food Chem., vol. 60, no. 24, pp. 6116–6122, Jun. 2012, doi: 10.1021/jf301401k.
  • K. C. Makris, S. S. Andra, A. Jia, L. Herrick, C. A. Christophi, S. A. Synder, and R. Hauser, “Association between Water Consumption from Polycarbonate Containers and Bisphenol A intake during Harsh Environmental Conditions in Summer,” Environ. Sci. Technol., vol. 47, no. 7, pp. 3333–3343, Apr. 2013, doi: 10.1021/es304038k.
  • Y. Sunucu Karafakıoğlu, “Antioxidants and Taurine as an Antioxidant,” Kocatepe Vet. J., vol. 3, no. 1, pp. 55–61, Mar. 2010.
  • T. Ito, S.W. Schaffer, and J. Azuma, “The Potential Usefulness of Taurine on Diabetes Mellitus and Its Complications,” Amino Acids, vol. 42, no. 5, pp. 1529–1539, Mar. 2012, doi:10.1007/s00726-011-0883-5.
  • F. Klamt, and E. Shacter, “Taurine Chloramine, an Oxidant Derived from Neutrophils, Induces Apoptosis in Human B Lymphoma Cells through Mitochondrial Damage,” J. Biol. Chem., vol. 280, no. 22, pp. 21346–21352, Jun. 2005, doi: 10.1074/jbc.M501170200.
  • B. B. Aggarwal, C. Sundaram, N. Malani, and H. Ichikawa, “Curcumin: The Indian Solid Gold,” Adv. Exp. Med. Biol., vol. 595, pp. 1–75, 2007, doi: 10.1007/978-0-387-46401-5_1.
  • A. B. Kunnumakkara, P. Anand, and B. B. Aggarwal, “Curcumin Inhibits Proliferation, Invasion, Angiogenesis and Metastasis of Different Cancers through Interaction with Multiple Cell Signaling Proteins,” Cancer Lett., vol. 269, no. 2, pp. 199–225, Oct. 2008, doi: 10.1016/j.canlet.2008.03.009.
  • M. S. Lin, Y. H. Lee, W.T. Chiu, and K.S. Hung, “Curcumin Provides Neuroprotection after Spinal Cord Injury,” J. Surg. Res., vol. 166, no. 2, pp. 280–289, Apr. 2011, doi: 10.1016/j.jss.2009.07.001.
  • H.S. Abdeen, M. E. El-Houseini, M. El-Sherbiny, R. Tabashy, and A. Salah, “Ex Vivo Assessment of the Protective Effect of Curcumin and Taurine Against Human Hepatocarcinogenesis,” J. Basic Appl. Zool., vol. 66, no. 4, pp. 180–187, Aug. 2013, doi:.org/10.1016/j.jobaz.2013.01.005.
  • O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” J. Biol. Chem., vol. 193, no. 1, pp. 265–275, Nov. 1951, doi: 10.1016/S0021-9258(19)52451-6.
  • H. Ohkawa, N. Ohishi, and K. Yagi, “Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction,” Anal. Biochem., vol. 95, no. 2, pp. 351–358, Jun. 1979, doi: 10.1016/0003-2697(79)90738-3.
  • S. Marklund, and G. Marklund, “Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase,” Eur. J. Biochem., vol. 47, no. 3, pp. 469–474, Sep. 1974, doi: 10.1111/j.1432-1033.1974.tb03714.x.
  • H. Aebi, “Catalase in Vitro,” Meth. Enzymol., vol. 105, pp. 121–126, 1984, doi: 10.1016/s0076-6879(84)05016-3.
  • D. E Paglia and W. N. Valentine, “Studies on the Quantative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase,” J. Lab. Med., vol. 70, no. 1, pp. 158–165, Jul. 1967.
  • S. S. Karnam, R. C. Ghosh, S. Mondal, and M. Mondal, “Evaluation of Subacute Bisphenol- A Toxicity on Male Reproductive System,” Vet. World, vol. 8, no. 6, pp. 738–744, Jun. 2015, doi: 10.14202/vetworld.2015.738-744.
  • S. Jenkins, N. Raghuraman, I. Eltoum, M. Carpenter, J. Russo, and C. A. Lamartiniere, “Oral Exposure to Bisphenol A Increases Dimethylbenzanthracene-Induced Mammary Cancer in Rats,” Environ. Health Perspect., vol. 117, no. 6, pp. 910–915, Jun. 2009, doi:10.1289/ehp.11751.
  • F. G. Apaydin, A. Aslanturk, M. Uzunhisarcikli, H. Baş, S. Kalender, and Y. Kalender, “Histopathological and Biochemical Studies on the Effect of Curcumin and Taurine against Bisphenol A Toxicity in Male Rats,” Environ. Sci. Pollut. Res., vol. 26, no. 12, pp. 12302–12310, Mar. 2019, doi: 10.1007/s11356-019-04578-4.
  • M. Uzunhisarcikli and A. Aslanturk, “Hepatoprotective Effects of Curcumin and Taurine against Bisphenol A-Induced Liver Injury in Rats,” Environ. Sci. Pollut. Res., vol. 26, pp. 37242–37253, Dec. 2019, doi:10.1007/s11356-019-06615-8.
  • A. Aslanturk and M. Uzunhisarcikli, “Protective Potential of Curcumin or Taurine on Nephrotoxicity Caused by Bisphenol A,” Environ. Sci. Pollut. Res., vol. 27, pp. 23994–24003, Apr. 2020, doi: 10.1007/s11356-020-08716-1.
  • S. Kalender, F. G. Apaydin, and Y. Kalender, “Testicular Toxicity of Orally Administrated Bisphenol A in Rats and Protective Role of Taurine and Curcumin,” Pak. J. Pharm. Sci. vol. 32, no. 3, pp. 1043–1047, May. 2019.
  • P. Alonso-Magdalena, S. Morimoto, C. Ripoll, E. Fuentes, and A. Nadal, “The Estrogenic Effect of Bisphenol A Disrupts Pancreatic B-Cell Function in Vivo and Induces Insulin Resistance,” Environ. Health Perspect., vol. 114, no. 1, pp. 106–112, Jan. 2006, doi:10.1289/ehp.8451.
  • L. Yin, Y. Dai, Z. Cui, X. Jiang, W. Liu, F. Han, A. Lin, J. Cao, and J. Liu, “The Regulation of Cellular Apoptosis by the ROS-Triggered PERK/EIF2α/chop Pathway Plays a Vital Role in Bisphenol A-Induced Male Reproductive Toxicity,” Toxicol. Appl. Pharmacol., vol. 314, pp. 98–108, Jan. 2017, doi: 10.1016/j.taap.2016.11.013.
  • F. G. Uzun and Y. Kalender, “Protective Effect of Vitamins C and E on Malathion-Induced Nephrotoxicity in Male Rats,” Gazi Univ. J. Sci., vol. 24, no. 2, pp. 193–201, Apr. 2011.
  • H. Baş, and Y. Kalender, “Nephrotoxic Effects of Lead Nitrate Exposure in Diabetic and Nondiabetic Rats: Involvement of Oxidative Stress and the Protective Role of Sodium Selenite,” Environ. Toxicol., vol. 31, no. 10, pp. 1229–1240, Oct. 2016, doi: 10.1002/tox.22130.
  • H. Baş, F. G. Apaydın, S. Kalender, and Y. Kalender, “Lead Nitrate and Cadmium Chloride Induced Hepatotoxicity and Nephrotoxicity: Protective Effects of Sesamol on Biochemical Indices and Pathological Changes,” J. Food Biochem., vol. 45, no. 7, e13769, Jul. 2021, doi: 10.1111/jfbc.13769.
  • C. Adiguzel and Y. Kalender, “Bendiocarb-Induced Nephrotoxicity in Rats and the Protective Role of Vitamins C and E,” Environ. Sci. Pollut. Res., vol. 27, no. 6, pp. 6449–6458, Feb. 2020, doi: 10.1007/s11356-019-07260-x.
  • E. Atabay, “Protective Role of Taurine and Curcumin on Lung Toxicity of Bisphenol A in Rats,” MSc Dissertation, Gazi University, Ankara, Türkiye, 63s. 2017.