Elemental Enrichments Compared to Global Average Anoxic Environments of Oil Shales in the Sorgun-Yeni Çeltek (Yozgat, Türkiye)

Elemental Enrichments Compared to Global Average Anoxic Environments of Oil Shales in the Sorgun-Yeni Çeltek (Yozgat, Türkiye)

In this study, the element enrichment of the Çeltek Formation oil shales located in the Yeni Çeltek coal mine field in the Sorgun district of Yozgat province and the economic mineral deposit potential were investigated. The ICP-MS (ICP mass spectrometry) technique was used for elemental analysis, and the Rock-Eval VI device was used to determine the amount of organic matter in rocks. Total Organic Carbon (% TOC) contents of oil shale samples belonging to 2 different boreholes and one measured stratigraphic section (MSS) made on the surface in the study area vary between 1.37-11.8 wt% (average 4.96% wt%). Major and trace element contents obtained from the samples were compared with the major and trace element values of standard environments known to have anoxic conditions worldwide. According to these results, petroleum products from the Çeltek Formation oil shales and naturally occurring radioactive materials such as U, Th, and K, especially from the remaining liquid rocks and ash, and Mn, Mg, Pb, Zr, Sr, K, Ti, Ca, and Rb. In order to acquire elements such as U and Co, new scientific research in which different disciplines (such as chemistry and metallurgy) will work together needs to be deepened.

___

  • A. İ. Karayiğit, R. A. Gayer, E. Cicioğlu, and E. Eriş, “Mineralogy and Petrography of the Two Lower Eocene Lacustrine Coals, Sorgun and Suluova, Turkiye.” Int. J. Coal Geol., vol. 34, no. 1–2, pp. 111–130, Oct. 1997, doi:10.1016/S0166-5162(97)00009-8.
  • J. L Qian, J. Q. Wang, and S. Y. Li, “Oil Shale Development in China,” Oil Shale., vol. 20, no. 3. pp. 356–359, 2003, ISSN 0208-189X, Estanian Academy Publishers.
  • J. Hilger, “Combined Utilization of Oil Shale Energy and Oil Shale Minerals within the Production of Cement and Other Hydraulic Binders.” Oil Shale, vol. 20, no. 3, pp. 347–355, 2003. ISSN 0208-189X, Estanian Academy Publishers.
  • Z. D., Ekinci, “Mineral-Element Relationships in the Storage Environments of the Bituminous Shales of the Çeltek Formation (Sorgun-Yozgat).” MSc Dissertation, Yozgat Bozok University, Yozgat, Türkiye, 2017.
  • B. Y. Pehlivanlı, “Organic Geochemistry and Rare Earth Element (REE) Characteristics of Oil-Bearing Shales of the Lower Eocene Çeltek Formation (Sorgun Yozgat Turkey).” Bozok University Project Coordination Application and Research Center, BAP project code, 2015 MMF/180, s.154. 2017.
  • J. M. Hunt, Petroleum Geochemistry and Geology. W. H. Freeman and Company, pp. 617, 1979.
  • B. Durand, J. Espitalie, G. Nicaise, and A. Combaz, “Étude De La Matière Organique Insgluble (Kérogène) Des Argiles Du Toarcien Du Bassin De Paris. L. Etude Par Les Procédés Optiques, Analyse Élémentaire, Étude En Microscopie Et Diffraction Électronique,” Rev. Inst. Fr. Pet., vol. 27, pp. 865–884, 1972.
  • D. M. Jarvie, “Total Organic Carbon (TOC) Analysis. Merrill, R.K., ed., Source and Migration Processes and Evaluation Techniques, Tulsa”, Am. Assoc. Pet. Geol. Bull., pp. 113–118, 1991.
  • B. Tissot and D. H. Welte, Petroleum Formation and Occurrence, 2. Edition. Springer-Verlag, Berlin, pp. 699, Feb. 1984.
  • K. E. Peters and M. R. Cassa, “Applied Source Rock Geochemistry.” in The Petroleum System- from Source to Trap, L.B. Magoon and W.G. Dows eds., AAPG Memoir, vol. 60, pp. 93–117, 1994.
  • E. T. Degens, Perspectives on Biogeochemistry. Springer, Berlin Heidelberg New York, pp. 423, May. 1989.
  • R. D. Cody, “Adsorption and the Reliability of Trace Elements as Environmental Indicators for Shales.” J. Sediment. Petrol., vol. 41, pp. 461–471, June 1971, doi:10.1306/74D7229D-2B21-11D7-8648000102C1865D.
  • H. J. Brumsack, “The Trace Metal Content of Recent Organic Carbon-Rich Sediments: Implications for Cretaceous Black Shale Formation.” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 232, pp. 344–361, Mar. 2006, doi:10.1016/j.palaeo.2005.05.011.
  • K. K. Turekian and K. H. Wedepohl “Distribution of the Elements in Some Major Units of the Earths Crust.” Bull. Geol. Soc. Amer., vol. 72, pp. 175–192, 1961, doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2.
  • P. Böning, H. J. Brumsack, M. E. Böttcher, B. Schnetger, C. Kriete, J. Kallmeyer, and S. L. Borchers, “Geochemistry of Peruvian Near-Surface Sediments.” Geochim. Cosmochim. Acta, vol. 68, pp. 4429–4451, Nov. 2004, doi:10.1016/j.gca.2004.04.027.
  • S. L. Borchers, B. Schnetger, P. Böning, and H. J. Brumsack, “Geochemical Signatures of the Namibian Diatom Belt: Perennial Upwelling and Intermittent Anoxia.” Geochem. Geophys. Geosystems, vol. 6, no. 6, pp. 1–20, June 2005, doi:10.1029/2004GC000886.
  • B. Warning and H. J. Brumsack, “Trace Metal Signatures of Mediterranean Sapropels.” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 158, no. 3–4, pp. 293–309, May 2000, doi:10.1016/S0031-0182(00)00055-9.
  • B. B. Jørgensen, M. E. Böttcher, H. Lüschen, L. N. Neretin, and I. Volkov, “Anaerobic Methane Oxidation and a Deep H2S Sink Generate Isotopically Heavy Sulfides in Black Sea Sediments.” Geochim. Cosmochim. Acta, vol. 68, Issue 9, pp. 2095–2118, May 2004, doi:10.1016/j.gca.2003.07.017.
  • S. E. Calvert and T. F. Pedersen, “Geochemistry of Recent Oxic and Anoxic Marine Sediments: Implications for the Geological Record.” Mar. Geol., vol. 113, pp. 67–88, July 1993, doi:10.1016/0025-3227(93)90150-T.
  • H. J. Brumsack, “The Inorganic Geochemistry of Cretaceous Black Shales (DSDP Leg 41) in Comparison to Modern Upwelling Sediments from the Gulf of California.” in Summerhayes, C.P., Shackleton, N. J. (Eds.), North Atlantic Paleoocenography. Special Publication, Geological Society, London, vol. 21, pp. 447–462, 1986, doi: 10.1144/gsl.sp.1986.021.01.30.
  • M. A., Arthur, H. J., Brumsack, H. C. Jenkyns, and S. O. Schlanger, “Stratigraphy, Geochemistry and Paleoceanography of Organic Carbon-Rich Cretaceous Sequences” in Cretaceous Resources, Events and Rhythms, eds.” Ginsburg, R. N. and Beaudoin, B. Kluwer Academic, pp. 75–119, 1990, doi: 10.1007/978-94-015-6861-6_6.
  • J. R. Hatch and J. S. Leventhal, “Relationship Between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian Missourian Stark Shale Member of the Dennis Limestone, Wabaunsee County,” Kansas, U.S.A. Chemical Geology, vol. 99, pp. 65–82, Sep. 1992, doi:10.1016/0009-2541(92)90031-Y.
  • N. Kıratlı, and M. Ergin, “Partitioning of Heavy Metals in Surface Black Sea Sediments,” Appl. Geochem., vol. 11, pp.775–788, Nov. 1996, doi:10.1016/S0883-2927(96)00037-6.
  • H. J. Brumsack, “Geochemistry of Recent TOC-Rich Sediments from the Gulf of California and the Black Sea.” Geologische Rundschau, vol. 78, pp. 851–882, Oct. 1989.
  • S. R. Jacobson, “Petroleum Source Rocks and Organic Facies. Merrill, R.K., ed., Source and Migration Processes and Evaluation Techniques, Tulsa,” Am. Assoc. Pet. Geol. Bull., pp. 213, 1991.
  • S. R. Taylor and S. M. McLennan, The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, pp. 312, 1985.
  • J. J. Renton, “Mineral Matters in Coal,” in Mayers, R. A. (Ed.). Coal Structure. New York Academy Press. 1982.
  • A. Kolker, R. B. Finkelman, C. A. Palmer, and H. E. Belkin, “Arsenic, Mercury and Other Trace Metals in Coal: Environmental and Health Implications” (Abstract, International Ash Utilization Symposium, Lexington, KY), 2001.
  • R. Ivanov, “Native Metals (Gold, Silver, Copper) in Upper Cretaceus and Paleogene Sediments in the Western Fore-Balkan and the Central Balkan.” Geol. Miner. Resour., vol. 4–5, no. 19–23 (in Bulgarian with English abstract), 1999.
  • Ş. Koç, A. Sarı and B. Yavuz Pehlivanli, “Variation of Trace and Radioactive Element in the Hatıldağ Oil Shale (HOS): Factors Controlling of Depositional Environment, Goynuk Area, Bolu, Turkiye.” J. Unconv. Oil Gas Resour., vol.15, pp. 84–97, Oct. 2016, doi:10.1016/j.juogr.2016.05.005.
  • S. Dai, W. C. Zhang, R. Wardc, V. V. Seredin, J. C. Hower, X. Li, W. Song, X. Wang, H. Kang, L. Zheng, P. Wang, and D. Zhou, “Mineralogical and Geochemical Anomalies of Late Permian Coals from the Fusui Coalfield, Guangxi Province, Southern China: Influences of Terrigenous Materials and Hydrothermal Fluids”. Int. J. Coal Geol., vol. 105, pp 60–84, Jan. 2013, doi:10.1016/j.coal.2012.12.003.
  • M. Yossifova, “Petrography, Mineralogy and Geochemistry of Balkan Coals and their Waste Products.” Int. J. Coal Geol. vol. 122, pp. 1–20, Feb. 2014, doi:10.1016/j.coal.2013.12.007.
  • C. L. Chou, “Sulfur in Coals: A Review of Geochemistry and Origins.” Int. J. Coal Geol., vol. 100, pp. 1–13, Oct. 2012, doi:10.1016/j.coal.2012.05.009.
  • R. Wiese and W. Fyfe, “Occurrences of Iron Sulfides in Ohio Coals.” Int. J. Coal Geol. vol. 6, pp. 251–276, Sept. 1986, doi:10.1016/0166-5162(86)90004-2.
  • M. Yossifova, “Mineral and Inorganic Chemical Composition of the Pernik Coal, Bulgaria.” Int. J. Coal Geol., vol. 72, pp. 268–292, Nov. 2007, doi:10.1016/j.coal.2007.03.001.
  • I. Kostova and A. Zdravkov, “Organic Petrology, Mineralogy and Depositional Environment of the Kipra Lignite Seam, Maritza-West Basin, Bulgaria.” Int. J. Coal Geol., vol. 71, pp. 527–554, Aug. 2007, doi:10.1016/j.coal.2006.06.006.
  • W. Wang, Y. Qin, J. Liu J. Li and L. Yuan, “Mineral Microspherules in Chinese Coal and their Geological and Environmental Significance.” Int. J. Coal Geol., vol. 94, pp. 111– 122, May 2012, doi:10.1016/j.coal.2011.11.013.
  • J. D. Saxby, “Minerals in Coal.” in Glikson, M., Mastalerz, M. (Eds.), Organic Matter and Mineralisation. Kluwer Academic Publishers, pp. 314–326, 2000, doi: 10.1007/978-94-015-9474-5_15.
  • P. Zubovic, “Physicochemical Properties of Certain Minor Elements as Controlling Factors in their Distribution in Coal.” in Given, P. H. (Ed.), Coal Science. American Chemical Society, Advances in Chemistry, vol.55, pp. 221–231, Jan. 1966, doi: 10.1021/ba-1966-0055.ch013.
  • J. Ciesielczuk, M. Misz-Kennan, J. C. Hower, and M. J. Fabiańska, “Mineralogy and Geochemistry of Coal Wastes from the Starzykowiec Coal-Waste Dump (Upper Silesia, Poland).” Int. J. of Coal Geol., vol. 127, pp. 42–55, Jul. 2014, doi:10.1016/j.coal.2014.02.007.
  • C. R. Ward, D. A. Spears, C. A. Booth, I. Staton, and L.W. Gurba, “Mineral Matterand Trace Element Sincoals of the Gunnedah Basin, New South Wales, Australia.” Int. J. Coal Geol. vol.40, pp. 281–308, Jul. 1999, doi:10.1016/S0166-5162(99)00006-3.
  • S. Dai, D. Ren, Y. Zhou, C. L. Chou, X. Wang, L. Zhao, and X. Zhu, “Mineralogy and Geochemistry of a Superhigh-Organic-Sulfur Coal, Yanshan Coalfield, Yunnan, China: Evidence for a Volcanic Ash Component and Influence by Submarine Exhalation.” Chem. Geol. vol. 255, pp. 182–194, Sept. 2008, doi:10.1016/j.chemgeo.2008.06.030.
  • J. C. Hower, J. L. Campbell, W. J. Teesdale, Z. Nejedly, and J. D. Robertson, “Scanning Proton Microprobe Analysis of Mercury and Other Trace Elements in Fesufides from a Kentucky Coal.” Int. J. Coal Geol., vol. 75, pp. 88–92, Jul. 2008, doi: 10.1016/j.coal.2008.03.001.
  • S. Dai, X. Wang, V. V. Seredin, J. C. Hower, C. R. Ward, J. M. K. O'Keefe, W. Huang, T. Li, X. Li, H. Liu, W. Xue, and L. Zhao, “Petrology, Mineralogy, and Geochemistry of the Ge-Rich Coal from the Wulantuga Ge Ore Deposit, Inner Mongolia, China: New Data and Genetic Implication.” Int. J. Coal Geol., vol. 90–91, pp. 72–99, Feb. 2012, doi:10.1016/j.coal.2011.10.012.