Free Energy Calculation for NavAb Channel Using the Crooks Fluctuation Method

Free Energy Calculation for NavAb Channel Using the Crooks Fluctuation Method

Membrane proteins such as ion channels, transporters and receptors are among the biologically important proteins. Because membrane proteins allow cells to communicate with their environment. Therefore, membrane proteins are targets for almost all drugs. It is also of scientific interest that membrane proteins play an important role in the control of the life process. Recent developments in experimental and computational sciences have further increased the interest in membrane proteins. The milestone development in this area is the obtaining of the crystal structure of membrane proteins. The crystal structure of the voltage-gated bacterial Nav channel was obtained in 2011 by Payandeh et al. Voltage-gated sodium channels are very important as they initiate the action potential. In this study, the Crooks fluctuation method, which was developed for the calculation of free energy in unbalanced systems, was applied for voltage-gated sodium channels, which is a complex biological system. The results were compared with other calculation methods in the literature.

___

  • J. Payandeh, T. Scheuer, N. Zheng, and W. A. Catterall, “The Crystal Structure of a Voltage-Gated Sodium Channel,” Nature, vol. 475, no. 7356, pp. 353–359, July 2011, doi: 10.1038/nature10238.
  • E. Schrodinger, What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge, 1945.
  • D. Haynes, Biological Thermodynamics. Cambridge University Press, Cambridge, 2008.
  • E. A. Calzetta, “Kinesin and the Crooks Fluctuation Theorem,” Eur. Phys. J. B., vol. 68, no. 4, pp. 601–605, Apr. 2009, doi: 10.1140/epjb/e2009-00113-8.
  • C. Bustamante, J. Liphardt, and F. Ritort, “The Nonequilibrium Thermodynamics of Small Systems,” Physics Today, vol. 58, no. 7, pp. 43–48, July 2005, doi: 10.1063/1.2012462.
  • F. Ritort, “Nonequilibrium Fluctuations in Small Systems: From Physics to Biology,” Adv. Chem. Phys., vol. 137, pp. 31–123, Dec. 2007, doi: 10.1002/9780470238080.ch2.
  • D. L. Beveridge and F. M. DiCapua, “Free Energy via Molecular Simulation: Applications to Chemical and Biomolecular Systems,” Annu. Rev. Biophys. Biophys. Chem., vol. 18, no. 1, pp. 431–492, June 1989, doi: 10.1146/annurev.bb.18. 060189.002243.
  • M. Khabiri, “Computational Investigations of Biomolecular Systems and Comparison with Experiments in Various Environmental Conditions,” PhD Dissertation, University of South Bohemia in Ceske Budejovice, Nove Hrady, Czech Republic, 2011.
  • P. Akhshi, “Molecular Dynamics Simulation Studies of Ion Transport along G-quadruplex DNA Channels,” PhD Dissertation, Queen's University, Ontario, Canada, 2013.
  • E. Buxbaum, Fundamentals of Protein Structure and Function. Springer International, Publishing Switzerland, 2015.
  • F. Bezanilla, “The Action Potential: From Voltage-Gated Conductances to Molecular Structures,” Biol. Res., vol. 39, no. 3, pp. 425–435, Nov. 2006, doi: 10.4067/s0716-97602006000300005.
  • [T. Baştuǧ and S. Kuyucak, “Molecular Dynamics Simulations of Membrane Proteins,” Biophys. Rev., vol. 4, no. 3, pp. 271–282, Sep. 2012. doi: 10.1007/s12551-012-0084-9.
  • G. Heinzelmann, T. Baştuğ, and S. Kuyucak, “Free Energy Simulations of Ligand Binding to the Aspartate Transporter GltPh,” Biophys. J., vol. 101, no. 10, pp. 2380–2388, Nov. 2011, doi: 10.1016/j.bpj.2011.10.010.
  • T. P. Straatsma, H. J. C. Berendsen, and J. P. M. Postma, “Free-Energy of Hydrophobic Hydration: A Molecular-Dynamics Study of Noble-Gases in Water,” J. Chem. Phys., vol. 85, no. 11, pp. 6720–6727, Dec. 1986, doi: 10.1063/1.451846.
  • R. Zwanzig, “High-Temperature Equation of State by a Perturbation Method 1. Nonpolargases,” J. Chem. Phys., vol. 22, no. 8, pp. 1420–1426, Aug. 1954, doi: 10.1063/1.1740409.
  • M. Çavuş, “Free Energy Calculation of Ion and Ligand Binding to Membrane Proteins,” PhD Dissertation, Gazi University, Ankara, Türkiye, 2013.
  • G. E. Crooks, “The Entropy Production Fluctuation Theorem and the Nonequilibrium Work Relation for Free Energy Differences,” Phys. Rev. E., vol. 60, no. 3, pp. 2721–2726, Sep. 1999, doi: 10.1103/PhysRevE.60.2721.
  • M. K. P. Ayalasomayajula, “Theoretical Studies of Single Molecule Biophysical Systems and Photochemical Ensembles,” PhD Dissertation, California Institute of Technology, Pasadena, California, 2007.
  • C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences,” Phys. Rev. Lett., vol. 78, no. 14, pp. 2690–2693, Apr. 1997, doi: 10.1103/PhysRevLett.78.2690.
  • B. Hille, Ion Channels of Excitable Membranes, Third Edition. Sinauer Associates, Massachusetts, USA, 2001.
  • S. Kuyucak and T. Baştuǧ, “Physics of Ion Channels,” J. Biol. Phys., vol. 29, no. 4, pp. 429–446, Dec. 2003, doi: 10.1023/A:1027309113522.
  • A. L. Hodgkin and A. F. Huxley, “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve,” J. Physiol., vol. 117, no. 4, pp. 500–544, Aug. 1952, doi: 10.1113/jphysiol.1952.sp004764.
  • D. P. Ryan and L. J. Ptacek, “Episodic Neurological Channelopathies,” Neuron, vol: 68, no. 2, pp. 282–292, Oct. 2010, doi: 10.1016/j.neuron.2010.10.008.
  • W. A. Catterall, “Common Modes of Drug Action on Na1 Channels: Local Anesthetics, Antiarrhythmics and Anticonvulsants,” Trends Pharmacol. Sci., vol. 8, no. 2, pp. 57–65, Feb. 1987, doi: 10.1016/0165-6147(87)90011-3.
  • W. A. Catterall, “Ion Channel Voltage Sensors: Structure, Function and Pathophysiology,” Neuron, vol. 67, no. 6, pp. 915–928, Sep. 2010, doi: 10.1016/j.neuron.2010.08.021.
  • D. Ren, B. Navarro, H. Xu, L. Yue, Q. Shi, and D. E. Clapham, “A Prokaryotic Voltage-Gated Sodium Channel,” Science, vol. 294, no. 5550, pp. 2372–2375, Dec. 2001, doi: 10.1126/science.1065635.
  • R. Y. Yada, R. L. Jackman, and S. Nakai, “Secondary Structure Prediction and Determination of Proteins-A Review,” Int. J. Pept. Protein Res., vol. 31, no. 1, pp. 98–108, Jan. 1988, doi: 10.1111/j.1399-3011.1988.tb00011.x.
  • L. Yue, B. Navarro, D. Ren, A. Ramos, and D. E. Clapham, “The Cation Selectivity Filter of the Bacterial Sodium Channel, NaChBac,” J. Gen. Physiol., vol. 120, no. 6, pp. 845–853, Dec. 2002, doi: 10.1085/jgp.20028699.
  • Y. Zhao, T. Scheuer, and W. A. Catterall, “Reversed Voltage-Dependent Gating of a Bacterial Sodium Channel with Proline Substitutions in the S6 Transmembrane Segment,” Proc. Natl. Acad. Sci. USA, vol. 101, no. 51, pp. 17873–17878, Dec. 2004, doi: 10.1073/pnas.0408270101.
  • W. Humphrey, A. Dalke, and K. Schulten, “VMD-Visual Molecular Dynamics,” J. Mol. Graph., vol. 14, no. 1, pp. 33–38, Feb. 1996, doi: 10.1016/0263-7855(96)00018-5.
  • L. Kale, R. Skeel, M. Bhandakar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten, “NAMD2: Greater Scale Ability for Parallel Molecular Dynamics,” J. Comput. Phys. vol. 151, no. 1, pp. 283–312, May 1999, doi: 10.1006/jcph.1999.6201.
  • A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, “All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,” J. Phys. Chem. B., vol. 102, no. 18, pp. 3586–3616, Apr. 1998, doi: 10.1021/jp973084f.
  • B. Corry and M. Thomas, “Mechanism of Ion Permeation and Selectivity in a Voltage Gated Sodium Channel,” J. Am. Chem. Soc., vol. 134, no. 3, pp. 1840–1846, Jan. 2012, doi: 10.1021/ja210020h.
  • S. Furini and C. Domene, “On Conduction in a Bacterial Sodium Channel,” PLoS Comput. Biol., vol. 8, no. 4, pp. e1002476, Apr. 2012, doi: 10.1371/journal.pcbi.1002476.
  • H. Qiu, R. Shen, and W. Guo, “Ion Solvation and Structural Stability in a Sodium Channel Investigated by Molecular Dynamics Calculations,” Biochim. Biophys. Acta., vol. 1818, no. 11, pp. 2529–2535, Nov. 2012, doi: 10.1016/j.bbamem.2012.06.003.
  • V. Oakes, S. Furini, and C. Domene, “Voltage-Gated Sodium Channels: Mechanistic Insights from Atomistic Molecular Dynamics Simulations,” Curr. Top. Membr., vol. 78, pp. 183–214, Jan. 2016, doi: 10.1016/bs.ctm.2015.12.002.