Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism
Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism
Hitherto, boric is suggested and used as a promoter or catalyst for carbondioxide capture in various chemical absorption reactions, such as, absorptionby aqueous potassium carbonate solution to increase mass transfer rate. Butin this study, a single step termolecular reaction mechanism is suggested forthe chemical absorption of carbon dioxide directly by boric acid and water. Thereaction thermochemistry and reaction kinetics for termolecular mechanism areinvestigated by using density functional theory calculations at the B3LYP/6-31G(d)level of theory by taking into account of the implicit solvent effects of water throughthe polarizable continuum model and dispersion corrections. The findings obtainedfrom theoretical calculations indicate that it is possible to capture carbon dioxidewith boric acid in the form of B(OH)2OCOOH.
___
- Couchaux G., Barth D., Jacquin M., Faraj A., Grandjean
J., Kinetics of carbon dioxide with amines. I.
Stopped-flow studies in aqueous solutions. A review,
Oil Gas. Sci. Technol. – Rev d’IFP Energies Nouv., 69,
865–884, 2014.
- Kang S. P., Lee J., Seo Y., Pre-combustion capture of
CO2 by gas hydrate formation in silica gel pore structure,
Chem. Eng. J., 218, 126–132, 2013.
- Smith K. H., Anderson C. J., Tao W., Endo K., Mumford
K. A., Kentish S. E., et al., Pre-combustion capture
of CO2-Results from solvent absorption pilot plant trials
using 30 wt% potassium carbonate and boric acid
promoted potassium carbonate solvent, Int. J. Greenh.
Gas. Control, 10, 64–73, 2012.
- Babu P., Linga P., Kumar R., Englezos P., A review of
the hydrate based gas separation (HBGS) process
for carbon dioxide pre-combustion capture, Energy,
85,261–279, 2015.
- Plasynski S. I., Litynski J. T., McIlvried H. G., Srivastava
R. D., Progress and new developments in carbon
capture and storage, CRC Crit. Rev. Plant. Sci., 28,
123–138, 2009.
- Rubin E. S., Mantripragada H., Marks A., Versteeg P.,
Kitchin J., The outlook for improved carbon capture
technology, Prog. Energy. Combust. Sci., 38, 630–671,
2012.
- de Mello L. F., Gobbo R., Moure G.T., Miracca I., Oxycombustion
technology development for fluid catalytic
crackers (FCC) – large pilot scale demonstration, Energy
Procedia, 37, 7815–7824, 2013.
- Thiruvenkatachari R., Su S., An H., Yu X. X., Post
combustion CO2 capture by carbon fibre monolithic adsorbents,
Prog. Energy Combust. Sci., 35, 438–455,
2009.
- Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw
C., Post-combustion CO2 capture with chemical
absorption: A state-of-the-art review, Chem. Eng. Res.
Des., 89, 1609–1624, 2011.
- Liu H., Sema T., Liang Z., Fu K., Idem R., Na Y., et
al., CO2 absorption kinetics of 4-diethylamine-2-butanol
solvent using stopped-flow technique, Sep. Purif.
Technol., 136, 81–87, 2014.
- Niu Z., Guo Y., Zeng Q., Lin W., Experimental studies
and rate-based process simulations of CO2 absorption
with aqueous ammonia solutions, Ind. Eng. Chem.
Res., 51, 5309–5319, 2012
- Kumar S., Cho J. H., Moon I., Ionic liquid-amine blends
and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review,
Int. J. Greenh. Gas Control, 20, 87–116, 2014.
- Budzianowski W. M., Single solvents, solvent blends,
and advanced solvent systems in CO2 capture by absorption:
A review, Int. J. Glob. Warm., 7, 184-225,
2015.
- Pérez E. R., Santos R. H. A., Gambardella M. T. P., de
Macedo L. G. M., Rodrigues-Filho U. P., Launay J.-C.,
et al., Activation of carbon dioxide by bicyclic amidines,
J. Org. Chem., 69, 8005–8011, 2004.
- Ochiai B., Yokota K., Fujii A., Nagai D., Endo T., Reversible
trap−release of CO2 by polymers bearing DBU
and DBN moieties, Macromolecules, 41, 1229–1236,
2008.
- Yamada H., Matsuzaki Y., Higashii T., Kazama S.,
Density functional theory study on carbon dioxide absorption
into aqueous solutions of 2-Amino-2-methyl-
1-propanol using a continuum solvation model, J.
Phys. Chem. A, 115, 3079–3086, 2011.
- Wang Y., Han Q., Wen H., Theoretical discussion on
the mechanism of binding CO2 by DBU and alcohol,
Mol. Simul., 39, 822–827, 2013.
- Tankal H., Orhan O.Y., Alper E., Ozdogan T., Kayı H.,
Experimental and theoretical investigation of the reaction
between CO2 and carbon dioxide binding organic
liquids, Turk. J. Chem., 40, 706–719, 2016.
- Yuksel Orhan O., Tankal H., Kayı H., Alper E., Kinetics
of CO2 capture by carbon dioxide binding organic
liquids: Experimental and molecular modelling studies,
Int. J. Greenh. Gas Control, 49, 379–386, 2016.
- Orhan O. Y., Tankal H., Kayı H., Alper E., Innovative
carbon dioxide-capturing organic solvent: Reaction
mechanism and kinetics, Chem. Eng. Technol., 40,
737–744, 2017
- Eickmeyer A., Method for removing acid gases from
gaseous mixtures, US Patent No: US3851041A, 1974.
- Ahmadi M., Gomes V. G., Ngian K., Advanced modelling
in performance optimization for reactive separation
in industrial CO2 removal, Sep. Purif. Technol., 63,
107–115, 2008.
- Ghosh U. K., Kentish S. E., Stevens G. W., Absorption
of carbon dioxide into aqueous potassium carbonate
promoted by boric acid, Energy Procedia, 1, 1075–
1081, 2009.
- Endo K., Nguyen Q. S., Kentish S. E., Stevens G. W.,
The effect of boric acid on the vapour liquid equilibrium
of aqueous potassium carbonate, Fluid Phase Equilib.,
309, 109–113, 2011.
- Borhani T. N. G., Azarpour A., Akbari V., Wan Alwi S.
R., Manan Z. A., CO2 capture with potassium carbonate
solutions: A state-of-the-art review, Int. J. Greenh.
Gas Control, 41, 142–162, 2015.
- Guo D., Thee H., da Silva G., Chen J., Fei W., Kentish
S., et al., Borate-catalysed carbon dioxide hydration via the carbonic andyrase mechanism, Environ. Sci.
Technol., 45, 4802–4807, 2011.
- Kayı H., Kaiser R. I., Head J. D., A computational study
on the structures of methylamine-carbon dioxide-water
clusters: Evidence for the barrier free formation of the
methylcarbamic acid zwitterion (CH3NH2
+COO-) in interstellar
water ices, Phys. Chem. Chem. Phys., 13,
11083–11098, 2011.
- Becke A. D., Density-functional exchange-energy approximation
with correct asymptotic behavior, Phys.
Rev. A Gen. Phys., 38, 3098–3100, 1988.
- Lee C., Yang W., Parr R.G., Development of the Colle-
Salvetti correlation-energy formula into a functional of
the electron density, Phys. Rev. B Condens. Matter.,
37, 785–789, 1988.
- Becke A. D., A new mixing of Hartree–Fock and local
density‐functional theories, J. Chem. Phys., 98, 1372–
1377, 1993.
- Becke A. D., Density-functional thermochemistry.
III. The role of exact exchange, J. Chem. Phys., 98,
5648–5652, 1993.
- Hariharan P. C., Pople J. A., Influence of polarization
functions on MO hydrogenation energies, Theor.
Chim. Acta., 28, 213–222, 1973.
- Miertuš S., Scrocco E., Tomasi J., Electrostatic interaction
of a solute with a continuum. A direct utilizaion of
AB initio molecular potentials for the prevision of solvent
effects, Chem. Phys., 55, 117–129, 1981.
- Miertus̃ S., Tomasi J., Approximate evaluations of the
electrostatic free energy and internal energy changes
in solution processes, Chem. Phys., 65, 239–245,
1982
- Pascual-ahuir J. L., Silla E., Tuñon I., GEPOL: An improved
description of molecular surfaces. III. A new
algorithm for the computation of a solvent-excluding
surface, J. Comput. Chem., 15, 1127–1138, 1994.
- Grimme S., Antony J., Ehrlich S., Krieg H., A consistent
and accurate ab initio parametrization of density
functional dispersion correction (DFT-D) for the 94 elements
H-Pu, J. Chem. Phys., 132,154104, 2010.
- Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G.
E., Robb M. A., Cheeseman J. R., et al., Gaussian 09,
Rev. D.01., Wallingford CT, Gaussian Inc., 2013.
- Dennington R., Keith T., Millam J., GaussView, Ver.
5.0.9., Shawnee Mission KS, Semichem Inc., 2009.
- Eyring H., The activated complex in chemical reactions,
J. Chem. Phys., 445, 107–115, 1935.
- Supap T., Idem R., Tontiwachwuthikul P., Saiwan C.,
Analysis of monoethanolamine axcdxxnd its oxidative
degradation products during CO2 absorption from flue
gases: A comparative study of GC-MS, HPLC-RID,
and CE-DAD analytical techniques and possible optimum
combinations, Ind. Eng. Chem. Res., 45, 2437–
2451, 2006.