Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism

Theoretical investigation of carbon dioxide capture by aqueous boric acid solution: A termolecular reaction mechanism

Hitherto, boric is suggested and used as a promoter or catalyst for carbondioxide capture in various chemical absorption reactions, such as, absorptionby aqueous potassium carbonate solution to increase mass transfer rate. Butin this study, a single step termolecular reaction mechanism is suggested forthe chemical absorption of carbon dioxide directly by boric acid and water. Thereaction thermochemistry and reaction kinetics for termolecular mechanism areinvestigated by using density functional theory calculations at the B3LYP/6-31G(d)level of theory by taking into account of the implicit solvent effects of water throughthe polarizable continuum model and dispersion corrections. The findings obtainedfrom theoretical calculations indicate that it is possible to capture carbon dioxidewith boric acid in the form of B(OH)2OCOOH.

___

  • Couchaux G., Barth D., Jacquin M., Faraj A., Grandjean J., Kinetics of carbon dioxide with amines. I. Stopped-flow studies in aqueous solutions. A review, Oil Gas. Sci. Technol. – Rev d’IFP Energies Nouv., 69, 865–884, 2014.
  • Kang S. P., Lee J., Seo Y., Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure, Chem. Eng. J., 218, 126–132, 2013.
  • Smith K. H., Anderson C. J., Tao W., Endo K., Mumford K. A., Kentish S. E., et al., Pre-combustion capture of CO2-Results from solvent absorption pilot plant trials using 30 wt% potassium carbonate and boric acid promoted potassium carbonate solvent, Int. J. Greenh. Gas. Control, 10, 64–73, 2012.
  • Babu P., Linga P., Kumar R., Englezos P., A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture, Energy, 85,261–279, 2015.
  • Plasynski S. I., Litynski J. T., McIlvried H. G., Srivastava R. D., Progress and new developments in carbon capture and storage, CRC Crit. Rev. Plant. Sci., 28, 123–138, 2009.
  • Rubin E. S., Mantripragada H., Marks A., Versteeg P., Kitchin J., The outlook for improved carbon capture technology, Prog. Energy. Combust. Sci., 38, 630–671, 2012.
  • de Mello L. F., Gobbo R., Moure G.T., Miracca I., Oxycombustion technology development for fluid catalytic crackers (FCC) – large pilot scale demonstration, Energy Procedia, 37, 7815–7824, 2013.
  • Thiruvenkatachari R., Su S., An H., Yu X. X., Post combustion CO2 capture by carbon fibre monolithic adsorbents, Prog. Energy Combust. Sci., 35, 438–455, 2009.
  • Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C., Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des., 89, 1609–1624, 2011.
  • Liu H., Sema T., Liang Z., Fu K., Idem R., Na Y., et al., CO2 absorption kinetics of 4-diethylamine-2-butanol solvent using stopped-flow technique, Sep. Purif. Technol., 136, 81–87, 2014.
  • Niu Z., Guo Y., Zeng Q., Lin W., Experimental studies and rate-based process simulations of CO2 absorption with aqueous ammonia solutions, Ind. Eng. Chem. Res., 51, 5309–5319, 2012
  • Kumar S., Cho J. H., Moon I., Ionic liquid-amine blends and CO2BOLs: Prospective solvents for natural gas sweetening and CO2 capture technology—A review, Int. J. Greenh. Gas Control, 20, 87–116, 2014.
  • Budzianowski W. M., Single solvents, solvent blends, and advanced solvent systems in CO2 capture by absorption: A review, Int. J. Glob. Warm., 7, 184-225, 2015.
  • Pérez E. R., Santos R. H. A., Gambardella M. T. P., de Macedo L. G. M., Rodrigues-Filho U. P., Launay J.-C., et al., Activation of carbon dioxide by bicyclic amidines, J. Org. Chem., 69, 8005–8011, 2004.
  • Ochiai B., Yokota K., Fujii A., Nagai D., Endo T., Reversible trap−release of CO2 by polymers bearing DBU and DBN moieties, Macromolecules, 41, 1229–1236, 2008.
  • Yamada H., Matsuzaki Y., Higashii T., Kazama S., Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-Amino-2-methyl- 1-propanol using a continuum solvation model, J. Phys. Chem. A, 115, 3079–3086, 2011.
  • Wang Y., Han Q., Wen H., Theoretical discussion on the mechanism of binding CO2 by DBU and alcohol, Mol. Simul., 39, 822–827, 2013.
  • Tankal H., Orhan O.Y., Alper E., Ozdogan T., Kayı H., Experimental and theoretical investigation of the reaction between CO2 and carbon dioxide binding organic liquids, Turk. J. Chem., 40, 706–719, 2016.
  • Yuksel Orhan O., Tankal H., Kayı H., Alper E., Kinetics of CO2 capture by carbon dioxide binding organic liquids: Experimental and molecular modelling studies, Int. J. Greenh. Gas Control, 49, 379–386, 2016.
  • Orhan O. Y., Tankal H., Kayı H., Alper E., Innovative carbon dioxide-capturing organic solvent: Reaction mechanism and kinetics, Chem. Eng. Technol., 40, 737–744, 2017
  • Eickmeyer A., Method for removing acid gases from gaseous mixtures, US Patent No: US3851041A, 1974.
  • Ahmadi M., Gomes V. G., Ngian K., Advanced modelling in performance optimization for reactive separation in industrial CO2 removal, Sep. Purif. Technol., 63, 107–115, 2008.
  • Ghosh U. K., Kentish S. E., Stevens G. W., Absorption of carbon dioxide into aqueous potassium carbonate promoted by boric acid, Energy Procedia, 1, 1075– 1081, 2009.
  • Endo K., Nguyen Q. S., Kentish S. E., Stevens G. W., The effect of boric acid on the vapour liquid equilibrium of aqueous potassium carbonate, Fluid Phase Equilib., 309, 109–113, 2011.
  • Borhani T. N. G., Azarpour A., Akbari V., Wan Alwi S. R., Manan Z. A., CO2 capture with potassium carbonate solutions: A state-of-the-art review, Int. J. Greenh. Gas Control, 41, 142–162, 2015.
  • Guo D., Thee H., da Silva G., Chen J., Fei W., Kentish S., et al., Borate-catalysed carbon dioxide hydration via the carbonic andyrase mechanism, Environ. Sci. Technol., 45, 4802–4807, 2011.
  • Kayı H., Kaiser R. I., Head J. D., A computational study on the structures of methylamine-carbon dioxide-water clusters: Evidence for the barrier free formation of the methylcarbamic acid zwitterion (CH3NH2 +COO-) in interstellar water ices, Phys. Chem. Chem. Phys., 13, 11083–11098, 2011.
  • Becke A. D., Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A Gen. Phys., 38, 3098–3100, 1988.
  • Lee C., Yang W., Parr R.G., Development of the Colle- Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B Condens. Matter., 37, 785–789, 1988.
  • Becke A. D., A new mixing of Hartree–Fock and local density‐functional theories, J. Chem. Phys., 98, 1372– 1377, 1993.
  • Becke A. D., Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648–5652, 1993.
  • Hariharan P. C., Pople J. A., Influence of polarization functions on MO hydrogenation energies, Theor. Chim. Acta., 28, 213–222, 1973.
  • Miertuš S., Scrocco E., Tomasi J., Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects, Chem. Phys., 55, 117–129, 1981.
  • Miertus̃ S., Tomasi J., Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes, Chem. Phys., 65, 239–245, 1982
  • Pascual-ahuir J. L., Silla E., Tuñon I., GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface, J. Comput. Chem., 15, 1127–1138, 1994.
  • Grimme S., Antony J., Ehrlich S., Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132,154104, 2010.
  • Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., et al., Gaussian 09, Rev. D.01., Wallingford CT, Gaussian Inc., 2013.
  • Dennington R., Keith T., Millam J., GaussView, Ver. 5.0.9., Shawnee Mission KS, Semichem Inc., 2009.
  • Eyring H., The activated complex in chemical reactions, J. Chem. Phys., 445, 107–115, 1935.
  • Supap T., Idem R., Tontiwachwuthikul P., Saiwan C., Analysis of monoethanolamine axcdxxnd its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations, Ind. Eng. Chem. Res., 45, 2437– 2451, 2006.