Boron fosfat katkılı PVDf/Nafyon membranların proton değişim membranlı yakıt hücresi performansının incelenmesi

Bu çalışmada poliviniliden florür (PVDf) ve Nafyon bazlı kompozit membranlar çözelti döküm yöntemiyle sentezlenmiştir. Proton iletkenlik ve yakıt hücresi performansı gibi membran özelliklerini arttırmak amacıyla yapıya değişen oranlarda boron fosfat (%0, 2, 5, 10, 15 ve 25) katılmıştır. Sentezlenen membranlar su tutma kapasitesi, şişme özelliği, iyon değişim kapasitesi, proton iletkenlik ölçümleri ile karakterize edilip tekli hücrede yakıt hücresi performans analizleri gerçekleştirilmiştir. %10 BPO4 katkılı membrandan diğermembranlara göre daha iyi sonuçlar elde edilmiştir. Bu membran 80 °C’de %44,5 su tutma kapasitesine, %8,5 kalınlık değişimine, %0,15 yüzey alanı değişimine, 1,87 meq/g iyon değişim kapasitesine ve 0,0296 S/cm proton iletkenliğine sahiptir. Aynı membranın 80 °C çalışma sıcaklığı, %100 nemlilik ve 0,6 V hücre potansiyelinde akım yoğunluğu değeri 80 mA/cm2, güç yoğunluğu ise 0,048 W/cm2 olarak bulunmuştur. Bu özelliklerin yanı sıra %10 BPO4 katkılı membran çok iyi oksidatif ve hidrolitik kararlılık göstermiştir. buna karşınyaprak azot ve demir içerikleri arasında ise negatif ilişkiler tespit edilmiştir. 

Investigation of fuel cell performance of proton change membranes of boron phosphate additive PVDF/Nafıon membranes

In this study, polyvinylidene fluoride (PVDF), nafion based and boron phosphate doped composite membranes were synthesized by solution casting method. Boron phosphate was added in different ratios (0, 2, 5, 10, 15 and 25%) to the membrane for improve membrane properties such as proton conductivity and fuel cell performance. The synthesized membranes were characterized by water uptake capacity, swelling properties, ion exchange capacity, proton conductivity measurements, and single cell performanceanalyzes. As a result of characterization and performance experiments highest performance values are obtained for the membrane containing 10% boron phosphate. This membrane has 44.5% water uptake capacity, 8.5% change of thickness, 0.15% change of surface area, 1.87 meq/g ion exchange capacity and 0.0296 S/cm proton conductivity at 80 °C. The same membrane has 80 mA/cm2 current density and 0.048 W/cm2 power density at 80 °C cell temperature, 100% humidity and 0.6 V cell voltage. In addition to these properties, the 10% BPO4 doped membrane showed very good oxidative and hydrolytic stability. 

___

  • Parnian M.J., Rowshanzamir S., Gashoul F., Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications, Energy, 125, 614-628, (2017).
  • Pandey R.P., Shukla G., Manohar M., Shahi V.K., Graphene oxide based nanohybrid proton exchange membranes for fuel cell applications: An overview, Advances in Colloid and Interface Science, 240, 15-30, (2017).
  • Diaz M., Ortiz A., Pringle J.M., Wang X., Vijayaraghavan R., MacFarlanec D.R., Forsyth M., Ortiz I., Protic plastic crystal/PVDF composite membranes for Proton Exchange Membrane Fuel Cells under non-humidified conditions, Electrochimica Acta, 247, 970-976, (2017).
  • Kim D.J., Lee B.N., Nam S.Y., Characterization of highly sulfonated PEEK based membrane for the fuel cell application, International Journal of Hydrogen Energy, 42, 23768-23775, (2017).
  • Martos A.M., Biasizzo M., Trotta F., Río C., Váreza A., Levenfelda B., Synthesis and characterization of sulfonated PEEK-WC-PES copolymers for fuel cell proton exchange membrane application, Eurpean Polymer Journal, 93, 390-402, (2017).
  • Liu F., Wang S., Li J., Tian X., Wang X., Chen H., Wang Z., Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells, Journal of Membrane Science, 541, 492-499, (2017).
  • Park S.G., Chae K.J., Lee M., A sulfonated poly(atylene ether sulfone)/polyimide nanofiber composite proton exchange membrane for microbial electrolysis cell application under the coexistence of diverse competitive cations and protons, Journal of Membrane Science, 540, 165-173, (2017).
  • Haque M.A., Sulong A.B., Loh K.S., Majlan E.H., Husaini T., Rosli R.E., Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review, International Journal of Hydrogen Energy, 42, 9156-9179, (2017).
  • Yue Z., Cai Y.B., Xu S., Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications, Journal of Membrane Science, 501, 220-227, (2016).
  • Liu H., Gong C., Wang J., Liu X., Liu H., Cheng F., Wang G., Zheng G., Qin C., Wen S., Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications, Carbohydrate Polymers, 136, 1379-1385, (2016).
  • Kim D.J., Choi D.H., Park C.H., Nam S.Y., Characterization of the sulfonated PEEK/sulfonated nanoparticles composite membrane for the fuel cell application, International Journal of Hydrogen Energy, 41, 5793-5802, (2016).
  • Şahin A., Ar İ., Synthesis, characterization and fuel cell performance tests of boric acid and boron phosphate doped, sulphonated and phosphonated poly(vinyl alcohol) based composite membranes, Journal of Power Sources, 288, 426-433, (2015).
  • Wang H., Li X., Zhuang X., Cheng B., Wang W., Kang W., Shi L., Li H., Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells, Journal of Power Sources, 340, 201-209, (2017).
  • Prapainainar P., Dua Z., Kongkachuichaya P., Holmes S.M., Prapainainar C., Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance, Applied Surface Science, 421, 24-41, (2017).
  • Wu X.W., Wu N., Shi C.Q., Zheng Z.Y., Qi H.B., Wang Y.F., Proton conductive montmorillonite-Nafion composite membranes for direct ethanol fuel cells, Applied Surface Science, 388, 239-244, (2016).
  • Wang H., Li X., Zhuang X., Cheng B., Wang W., Kang W., Shi L., Li H., Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells, Journal of Power Sources, 340, 201-209, (2017).
  • Chien H.C., Tsai L.D., Lai C.M., Lin J.N., Zhu C.Y., Chang F.C., Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells, Journal of Power Sources, 226, 87-93, (2013).
  • Cai W., Fan K., Li J., Ma L., Xu G., Xu S., Ma L., Cheng H., A bi-functional polymeric nano-sieve Nafion composite membrane: Improved performance for direct methanol fuel cell applications, International Journal of Hydrogen Energy, 41, 17102-17111, (2016).
  • Kumar P., Jagwani S.K., Kundu P.P., A study on the heat behaviour of PEM, prepared by incorporation ofcrosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion, for its high temperature application in DMFC, Materials Today Communication, 2, e1-e8, (2015).
  • Ahmadian-Alam L., Kheirmand M., Mahdavi H., Preparation, characterization and properties of PVDF-g-PAMPS/PMMAco-PAMPS/silica nanoparticle as a new proton exchange nanocomposite membrane, Chemical Engineering Journal, 284, 1035-1048, (2016).
  • Park J.W., Wycisk R., Pintauro P.N., Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells, Journal of Membrane Science, 490, 103-112, (2015).
  • Das S., Kumar P., Dutta K., Kundu P.P, Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell, Applied Energy, 113, 169-177, (2014).
  • Abdrashitov E.F., Bokun V.C., Kritskaya D.A., Sanginov E.A., Ponomarev A.N., Dobrovolsky Y.A., Synthesis and properties of the PVDF-based proton exchange membranes with incorporated cross-linked sulphonated polystyrene for fuel cells, Solid State Ionics, 251, 9-12, (2013).
  • Farooqui, U.A., Ahmad A.L., Hamid N.A., Effect of polyaniline (PANI) on Poly(vinylidene fluoride-co-hexaflouro propylene) (PVDF-co-HFP) polymer electrolyte membrane prepared by breath figure method, Polymer Testing, 60, 124-131, (2017).
  • Devrim Y., Devrim H., Eroglu I., Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 41, 10044-10052, (2016).
  • Talib S.F.A., Azmi W.H., Zakaria I., Mohamed WANW., Mamat A.M.I., Ismail H., Daud W.R.W., Thermophysical Properties of Silicon Dioxide (SiO2) in Ethylene Glycol/Water Mixture for Proton Exchange Membrane Fuel Cell Cooling Application, Energy Procedia, 79, 366-371, (2015).
  • Yang H.N., Lee D.C., Park S.H., Kim W.J., Preparation of Nafion/various Pt-containing SiO2 composite membranes sulfonated via different sources of sulfonic group and their application in self-humidifying PEMFC, Journal of Membrane Science, 443, 210-218, (2013).
  • Hua T.J., Fei G.P., Yuan Z.Z., Hui L.W., Giang S.Z., Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs, International Journal of Hydrogen Energy, 33, 5686-5690, (2008).
  • Chen S.Y., Han C.C., Tsai C.H., Huang J., Yang Y.W., Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity, Journal of Power Sources, 171, 363-372, (2007).
  • Ozden A., Ercelik M., Ozdemir Y., Devrim Y., Colpan O., Enhancement of direct methanol fuel cell performance through the inclusion of zirconium phosphate, International Journal of Hydrogen Energy, 42, 21501-21517, (2017).
  • Al-Othmana A., Tremblaya A.Y., Pell W., Letaief S., Burchell T.J., Peppley B.A., Ternan M., Zirconium phosphate as the proton conducting material in direct hydrocarbon polymer electrolyte membrane fuel cells operating above the boiling point of water, Journal of Power Sources, 195, 2520-2525, (2010).
  • Sasikala S., Gopi K.H., Bhat S.D., Sulfosuccinic acid-sulfonated polyether ether ketone/organo functionalized microporous zeolite-13X membrane electrolyte for direct methanol fuel cells, Microporous and Mesoporous Materials, 236, 38-47, (2016).
  • Lin L., Zhang C., Liu C., Dong M., Zhang L., Deng P., Sun H., Huang H., Liu H., Zhang Y., Y type zeolites/PI membranes for sulfur-free hydrogen source and for fuel cell applications, International Journal of Hydrogen Energy, 39, 4704-4709 (2014).
  • Yu D.M., Yoon Y.J., Kim T.H., Lee J.Y., Hong Y.T., Sulfonated poly(arylene ether sulfone)/sulfonated zeolite composite membrane for high temperature proton exchange membrane fuel cells, Solid State Ionics, 233, 55-61, (2013).
  • Amirinejada M., Madaeni S.S., Rafiee E., Amirinejad S., Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells, 377, 89-98, (2011).
  • Cui Z., Xing W., Liu C., Liao J., Zhang H., Chitosan/heteropolyacid composite membranes for direct methanol fuel cell, Journal of Power Sources, 188, 24-29, (2009).
  • Liang Y.F., Zhu X.L., Jian X.G., Synthesis and properties of sulfonated poly(phthalazinone ether nitrile ketone)/boron phosphate composite membranes for PEMFC, Solid State Ionics, 179, 1940-1945, (2008).
  • Mamlouk M., Scott K., A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells, Journal of Power Sources, 286, 290-298, (2015).
  • Wen S., Gong C., Tsen W.C., Shu Y.C., Tsai F.C., Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells, International Journal of Hydrogen Energy, 34, 8982-8991, (2009).
  • Di S., Yan D., Han S., Yue B., Feng Q., Xie L., Chen J., Zhang D., Sun C., Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials, Journal of Power Sources, 211, 161-168, (2012).
  • Huang X., Deng Y., Xu C., Hu Y., Yang L., Luo P., Lu Y., Cheng J., Graphite oxide-incorporated CeP2O7/BPO4 solid composite electrolyte for high-temperature proton exchange membrane fuel cells, Fuel, 179, 299-304, (2016).
  • Mikhailenko S.D., Zaidi S.M.J., Kaliaguine S., Sulfonated polyether ether ketone based composite polymer electrolyte membranes, Catalyst Today, 67, 225-236, (2001).
  • Krishnan P., Park J.S., Kim C.S., Preparation of protonconducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol–gel process, Journal of Membrane Science, 279, 220-229, (2006).
  • Mikhailenko S.D., Zaidi S.M.J., Kaliaguine S., Electrical conductivity of boron orthophosphate in presence of water, 94, 1613-1618, (1998).
  • Mulla I.S., Chaudhary V.A., Vijayamohanan K., Humidity sensing properties of boron phosphate, Sens Actuator, 69, 72-76, (1998).
  • Lee J.Y., Yoom S., Hong Y.T., Thin bonding layer using sulfonated poly(arylene ether sulfone)/PVdF blends for hydrocarbon-based membrane electrode assemblies, Electrochimica Acta, 173, 268-275, (2015).
  • Sharma P.P., Gahlot S., Kulshrestha V., One Pot Synthesis of PVDF based copolymer proton conducting membrane by free radical polymerization for Electro-Chemical energy applications, Colloids and Surfaces A: Physicochem. Eng. Aspects, 520, 239-245, (2017).
  • Pandey J., Mir F.Q., Shukla A., Performance of PVDF supported silica immobilized phosphotungstic acid membrane (Si-PWA/PVDF) in direct methanol fuel cell, International Journal of Hydrogen Energy, 39, 17306-17313, (2014).
  • Hazarika M., Jana T., Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer, European Polymer Journal, 49, 1564-1576, (2013).
  • Wen S., Gong C., Tsen W.C., Shu Y.C., Tsai F.C., Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells,International Journal of Hydrogen Energy, 34, 8982-8991, (2009).